A geometric approach for testing regularity of multi-dimensional polynomial matrices and a pencil of $n$-matrices
Kybernetika, Tome 27 (1991) no. 3, pp. 271-279 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A22, 93B27, 93B40, 93C35
@article{KYB_1991_27_3_a11,
     author = {Savaci, F. Acar and G\"oknar, I. Cem},
     title = {A geometric approach for testing regularity of multi-dimensional polynomial matrices and a pencil of $n$-matrices},
     journal = {Kybernetika},
     pages = {271--279},
     year = {1991},
     volume = {27},
     number = {3},
     mrnumber = {1116841},
     zbl = {0746.93022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a11/}
}
TY  - JOUR
AU  - Savaci, F. Acar
AU  - Göknar, I. Cem
TI  - A geometric approach for testing regularity of multi-dimensional polynomial matrices and a pencil of $n$-matrices
JO  - Kybernetika
PY  - 1991
SP  - 271
EP  - 279
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a11/
LA  - en
ID  - KYB_1991_27_3_a11
ER  - 
%0 Journal Article
%A Savaci, F. Acar
%A Göknar, I. Cem
%T A geometric approach for testing regularity of multi-dimensional polynomial matrices and a pencil of $n$-matrices
%J Kybernetika
%D 1991
%P 271-279
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a11/
%G en
%F KYB_1991_27_3_a11
Savaci, F. Acar; Göknar, I. Cem. A geometric approach for testing regularity of multi-dimensional polynomial matrices and a pencil of $n$-matrices. Kybernetika, Tome 27 (1991) no. 3, pp. 271-279. http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a11/

[1] F. A. Savaci, I. C Göknar: Fault analysis and parameter identification in linear circuits in terms of topological matrices. Proc. IEEE Internat. Symp. on Circuits and Systems 1988, 937-941.

[2] F. A. Savaci: Fault Diagnosis in Linear Circuits; A Parameter Identification Approach. Ph. D. Dissertation, Faculty of Electrical-Electronics Engineering, Technical University of Istanbul 1988.

[3] Ö. Hüseyin, B. Özgüler: Inversion of multidimensional polyncmial matrices. AEU (1979), Band 33, 457-462.

[4] P. Bernhard: On singular implicit linear dynamical systems. SIAM J. Ccntrol Optim. 20 (1982), 612-633. | MR | Zbl

[5] D. G. Luenberger: Time-invariant description systems. Autcmatica 14 (1978), 473 - 470.

[6] E. L. Yip, R. Sinovec: Solvability, controllability and observability of continuous descriptor system. IEEE Trans. Automat. Control AC-26 (1981), 139-147. | MR

[7] P. S. Reddy D. R. Rami Reddy, M. N. S. Swamy: Proof of a modified form of Shanks' conjecture on the stability of 2-D planar least square inverse polynomials and its implications. IEEE Trans. Circuits and Systems CAS-31 (1984), 1009-1014. | MR

[8] F. A. Savaci, I. C Göknar: Multivariable polynomial interpolation method for testing column regularity of $n$-pencil. To be summitted for publication.