Geometric methods in the theory of singular 2-D linear systems
Kybernetika, Tome 27 (1991) no. 3, pp. 263-270 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B27, 93C05
@article{KYB_1991_27_3_a10,
     author = {Conte, Giuseppe and Perdon, Anna M. and Kaczorek, Tadeusz},
     title = {Geometric methods in the theory of singular {2-D} linear systems},
     journal = {Kybernetika},
     pages = {263--270},
     year = {1991},
     volume = {27},
     number = {3},
     mrnumber = {1116840},
     zbl = {0746.93021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a10/}
}
TY  - JOUR
AU  - Conte, Giuseppe
AU  - Perdon, Anna M.
AU  - Kaczorek, Tadeusz
TI  - Geometric methods in the theory of singular 2-D linear systems
JO  - Kybernetika
PY  - 1991
SP  - 263
EP  - 270
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a10/
LA  - en
ID  - KYB_1991_27_3_a10
ER  - 
%0 Journal Article
%A Conte, Giuseppe
%A Perdon, Anna M.
%A Kaczorek, Tadeusz
%T Geometric methods in the theory of singular 2-D linear systems
%J Kybernetika
%D 1991
%P 263-270
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a10/
%G en
%F KYB_1991_27_3_a10
Conte, Giuseppe; Perdon, Anna M.; Kaczorek, Tadeusz. Geometric methods in the theory of singular 2-D linear systems. Kybernetika, Tome 27 (1991) no. 3, pp. 263-270. http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a10/

[1] P. Bernhard: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20 (1982), 612-633. | MR | Zbl

[2] G. Conte, A. M. Perdon: A geometric approach to the theory of 2D-systems. IEEE Trans. Automat. Control AC-33 (1988), 10, 946 - 950. | MR

[3] G. Conte, A. M. Perdon: Geometric notions in the theory of 2D-systems. In: Linear Circuits, Systems and Signal Processing: Theory and Application (C Byrnes and C Martin, eds.), North-Holland, Amsterdam 1988. | Zbl

[4] G. Conte, A. M. Perdon: On the geometry of 2D systems. Proc. IEEE Internat. Symp. on Circuits and Systems Helsinki - Finlandia, 1988. | Zbl

[5] E. Fornasini, G. Marchesini: Doubly indexed dynamical systems: State space models and structural properties. Math. Systems Theory 12 (1978), 59 - 72. | MR | Zbl

[6] T. Kaczorek: $(A, B)$-invariant subspaces and V-invariant subspaces for Fornasini-Marchesini's model. Bull. Polish Acad. Sci. Tech. Sci. 35 (1988).

[7] T. Kaczorek: Singular general model of 2D systems and its solutions. IEEE Trans. Automat. Control AC-33 (1988), 1060-1061. | MR

[8] T. Kaczorek: General response formula and minimum energy control for the general singular model of 2D systems. IEEE Trans. Automat. Control AC-35 (1990), 433 - 436. | MR

[9] T. Kaczorek: Existence and uniqueness of solutions and Cayley-Hamilton theorem. Bull. Polish Acad. Sci. Tech. Sci. 37 (1989) (in press). | Zbl

[10] F. Lewis: A survey of 2D implicit systems. Proc. IMACS Internat. Symp. on Mathematical an Intelligent Models in System Simulation, Brussels, Belgium 1990.

[11] F. Lewis W. Marszalek, B. G. Mertzios: Walsh function analysis of 2D generalized continuous systems. IEEE Trans. Automat. Control (to appear, 1990). | MR

[12] W. Marszalek: Two dimensional state space discrete models for hyperbolic partial differential equations. Appl. Math. Modelling 8 (1984), 11 - 14. | MR | Zbl

[13] K. Ozcaldiran: Control of Descriptor Systems. Ph. D. Thesis, Georgia Institute of Tech- nology, 1985.

[14] M. Wohnam: Linear Multivariable Control: a Geometric Approach. Third edition. Springer- Verlag, New York-Berlin-Heidelberg 1985.