Design of observer based compensators: The polynomial approach
Kybernetika, Tome 27 (1991) no. 2, pp. 125-150 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B05, 93B07, 93B15, 93B25, 93B52, 93C05, 93C15
@article{KYB_1991_27_2_a4,
     author = {Hippe, Peter},
     title = {Design of observer based compensators: {The} polynomial approach},
     journal = {Kybernetika},
     pages = {125--150},
     year = {1991},
     volume = {27},
     number = {2},
     mrnumber = {1106784},
     zbl = {0734.93020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a4/}
}
TY  - JOUR
AU  - Hippe, Peter
TI  - Design of observer based compensators: The polynomial approach
JO  - Kybernetika
PY  - 1991
SP  - 125
EP  - 150
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a4/
LA  - en
ID  - KYB_1991_27_2_a4
ER  - 
%0 Journal Article
%A Hippe, Peter
%T Design of observer based compensators: The polynomial approach
%J Kybernetika
%D 1991
%P 125-150
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a4/
%G en
%F KYB_1991_27_2_a4
Hippe, Peter. Design of observer based compensators: The polynomial approach. Kybernetika, Tome 27 (1991) no. 2, pp. 125-150. http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a4/

[1] B. D. O. Anderson, V. Kučera: Matrix fraction construction of linear compensators. IEEE Trans. Automat. Control AC-30 (1985), 1112-1114.

[2] E. Bekir: A unified solution to the singular and nonsingular linear minimum-variance estimation problem. IEEE Trans. Automat. Control AC-33 (1988), 590-591. | Zbl

[3] B.-C. Chang: Programs for Solving Polynomial Equations. Technical Report No. 8209, Electrical Engineering Dept., Rice University, Houston, Texas 1982.

[4] A. Gelb: Applied Optimal Estimation. MIT Press, Cambridge, Mass. 1974. | MR

[5] P. Hippe: Parameterization of the full-order compensator in the frequency domain. Internat. J. Control 48 (1988), 1583-1603. | MR | Zbl

[6] P. Hippe: Parameterization of reduced-order compensator in the frequency domain. Internat. J. Control 49 (1989), 1143-1162. | MR | Zbl

[7] P. Hippe: Design of reduced-order optimal estimators directly in the frequency domain. Internat. J. Control 50 (1989), 2599-2614. | MR | Zbl

[8] P. Hippe: A nonminimal representation of reduced-order observers. Automatica 26 (1990), 405-409. | Zbl

[9] J. Ježek, V. Kučera: Efficient algorithm for matrix spectral factorization. Automatica 21 (1985), 663-669. | MR

[10] V. Kučera: Discrete Linear Control: The Polynomial Approach. Wiley-Interscience, New York 1979. | MR

[11] V. Kučera: New results in state estimation and regulation. Automatica 17 (1981), 745-748. | MR

[12] D. G. Luenberger: An introduction to observers. IEEE Trans. Automat. Control AC-16 (1971), 596-602.

[13] C. N. Nett C. A. Jacobson, M. J. Balas: A connection between state-space and doubly coprime fractional representations. IEEE Trans. Automat. Control AC-29 (1984), 831 - 832; | MR

[14] H. H. Rosenbrock: State Space and Multivariable Theory. Th. Nelson and Sons Ltd., London 1970. | MR | Zbl

[15] U. Shaked, E. Soroka: A simple solution to the singular linear minimim-variance estimation problem. IEEE Trans. Automat. Control AC-32 (1987), 81 - 84.

[16] W. A. Wolovich: Frequency domain state feedback and estimation. Internat. J. Control 17 (1973), 417-428. | MR | Zbl

[17] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York-Berlin- Heidelberg 1974. | MR | Zbl