Rank statistics for two-sample location and scale problem for rounded-off data
Kybernetika, Tome 27 (1991) no. 2, pp. 120-124
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1991_27_2_a3,
author = {Vorl{\'\i}\v{c}kov\'a, Dana},
title = {Rank statistics for two-sample location and scale problem for rounded-off data},
journal = {Kybernetika},
pages = {120--124},
year = {1991},
volume = {27},
number = {2},
mrnumber = {1106783},
zbl = {0728.62048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a3/}
}
Vorlíčková, Dana. Rank statistics for two-sample location and scale problem for rounded-off data. Kybernetika, Tome 27 (1991) no. 2, pp. 120-124. http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a3/
[1] M. N. Goria, D. Vorlíčková: On the asymptotic properties of rank statistics for the two-sample location and scale problem. Apl. mat. 30 (1985), 425-434. | MR
[2] A. R. Padmanabhan, M. L. Puri: Theory of nonparametric statistics for rounded-off data with applications. Statistics (Math. Operationsforsch. Statist. Ser. Statist.) 14 (1983), 301-349. | MR | Zbl
[3] D. Vorlíčková: Asymptotic properties of rank tests under discrete distributions. Z. Warsch. verw. Geb. 14 (1970), 275-289. | MR
[4] W. J. Conover: Rank tests for one sample, two samples and k samples without the assumption of a continuous distribution function. Ann. Statist. 1 (1973), 1105-1125. | MR | Zbl