Rank statistics for two-sample location and scale problem for rounded-off data
Kybernetika, Tome 27 (1991) no. 2, pp. 120-124 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62E20, 62G10, 62H10
@article{KYB_1991_27_2_a3,
     author = {Vorl{\'\i}\v{c}kov\'a, Dana},
     title = {Rank statistics for two-sample location and scale problem for rounded-off data},
     journal = {Kybernetika},
     pages = {120--124},
     year = {1991},
     volume = {27},
     number = {2},
     mrnumber = {1106783},
     zbl = {0728.62048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a3/}
}
TY  - JOUR
AU  - Vorlíčková, Dana
TI  - Rank statistics for two-sample location and scale problem for rounded-off data
JO  - Kybernetika
PY  - 1991
SP  - 120
EP  - 124
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a3/
LA  - en
ID  - KYB_1991_27_2_a3
ER  - 
%0 Journal Article
%A Vorlíčková, Dana
%T Rank statistics for two-sample location and scale problem for rounded-off data
%J Kybernetika
%D 1991
%P 120-124
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a3/
%G en
%F KYB_1991_27_2_a3
Vorlíčková, Dana. Rank statistics for two-sample location and scale problem for rounded-off data. Kybernetika, Tome 27 (1991) no. 2, pp. 120-124. http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a3/

[1] M. N. Goria, D. Vorlíčková: On the asymptotic properties of rank statistics for the two-sample location and scale problem. Apl. mat. 30 (1985), 425-434. | MR

[2] A. R. Padmanabhan, M. L. Puri: Theory of nonparametric statistics for rounded-off data with applications. Statistics (Math. Operationsforsch. Statist. Ser. Statist.) 14 (1983), 301-349. | MR | Zbl

[3] D. Vorlíčková: Asymptotic properties of rank tests under discrete distributions. Z. Warsch. verw. Geb. 14 (1970), 275-289. | MR

[4] W. J. Conover: Rank tests for one sample, two samples and k samples without the assumption of a continuous distribution function. Ann. Statist. 1 (1973), 1105-1125. | MR | Zbl