Efficient estimation under constraints
Kybernetika, Tome 27 (1991) no. 2, pp. 100-113 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62G05, 62G07, 62G20
@article{KYB_1991_27_2_a1,
     author = {Hipp, Christian},
     title = {Efficient estimation under constraints},
     journal = {Kybernetika},
     pages = {100--113},
     year = {1991},
     volume = {27},
     number = {2},
     mrnumber = {1106781},
     zbl = {0739.62030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a1/}
}
TY  - JOUR
AU  - Hipp, Christian
TI  - Efficient estimation under constraints
JO  - Kybernetika
PY  - 1991
SP  - 100
EP  - 113
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a1/
LA  - en
ID  - KYB_1991_27_2_a1
ER  - 
%0 Journal Article
%A Hipp, Christian
%T Efficient estimation under constraints
%J Kybernetika
%D 1991
%P 100-113
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a1/
%G en
%F KYB_1991_27_2_a1
Hipp, Christian. Efficient estimation under constraints. Kybernetika, Tome 27 (1991) no. 2, pp. 100-113. http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a1/

[1] S. J. Haberman: Adjustment by minimum discriminant information. Ann. Statist. 12 (1984), 971-988. | MR | Zbl

[2] C. Hipp: Efficient estimators for ruin probabilities. In: Proc. 4th Prague Symp. Asympt. Statist. (P. Mandl, M. HuSkova, eds.), Charles University, Prague 1989, pp. 259-268. | MR | Zbl

[3] J. Pfanzagl, W. Wefelmeyer: Contributions to a General Asymptotic Statistical Theory. (Lecture Notes in Statistics 13.) Springer-Verlag, Berlin-Heidelberg-New Nork 1982. | MR | Zbl

[4] D. Pollard: A central limit theorem for empirical processes. J. Austral. Math. Soc. A33, (1982), 235-248. | MR | Zbl

[5] A. Sheehy: Kullback-Leibler constrained estimation of probability measures. Preprint, Dept. of Statist., Stanford University 1988.

[6] A. Sheehy, J. A. Wellner: Uniformity in P of Some Limit Theorems for Empirical Measures and Processes. Tech. Rep. 134, Dept. Statist., University of Washington, Seattle, WA 1988.