@article{KYB_1991_27_2_a0,
author = {Behnen, Konrad and Neuhaus, Georg},
title = {Likelihood ratio rank tests for the two-sample problem with randomly censored data},
journal = {Kybernetika},
pages = {81--99},
year = {1991},
volume = {27},
number = {2},
mrnumber = {1106780},
zbl = {0743.62032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a0/}
}
Behnen, Konrad; Neuhaus, Georg. Likelihood ratio rank tests for the two-sample problem with randomly censored data. Kybernetika, Tome 27 (1991) no. 2, pp. 81-99. http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a0/
[1] K. Behnen, G. Neuhaus: Rank Tests with Estimated Scores and Their Application. Teubner, Stuttgart 1989. | MR | Zbl
[2] J. Hájek, Z. Šidák: Theory of Rank Tests. Academic Press, New York 1967. | MR
[3] A. Janssen: Local asymptotic normality for randomly censored models with applications to rank tests. Preprint 199, Univ. Siegen 1987. | MR
[4] A. Kudo: A multivariate analog of the one-sided test. Biometrika 50 (1963), 403 - 418. | MR
[5] G. Neuhaus: Asymptotically optimal rank tests for the two-sample problem with randomly censored data. Commun. Statist. - Theory Meth. 17 (1988), 6, 2037-7058. | Zbl
[6] P. E. Niiesch: On the problem of testing location in multivariate populations for restricted alternatives. Ann. Math. Statist. 37 (1966), 113-119. | MR
[7] P. E. Niiesch: Estimation of monotone parameters and the Kuhn-Tucker conditions. Ann. Math. Statist. 41 (1970), 1800.
[8] H. Strasser: Mathematical Theory of Statistics. de Gruyter, Berlin 1985. | MR | Zbl