Likelihood ratio rank tests for the two-sample problem with randomly censored data
Kybernetika, Tome 27 (1991) no. 2, pp. 81-99 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62G10, 65C05
@article{KYB_1991_27_2_a0,
     author = {Behnen, Konrad and Neuhaus, Georg},
     title = {Likelihood ratio rank tests for the two-sample problem with randomly censored data},
     journal = {Kybernetika},
     pages = {81--99},
     year = {1991},
     volume = {27},
     number = {2},
     mrnumber = {1106780},
     zbl = {0743.62032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a0/}
}
TY  - JOUR
AU  - Behnen, Konrad
AU  - Neuhaus, Georg
TI  - Likelihood ratio rank tests for the two-sample problem with randomly censored data
JO  - Kybernetika
PY  - 1991
SP  - 81
EP  - 99
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a0/
LA  - en
ID  - KYB_1991_27_2_a0
ER  - 
%0 Journal Article
%A Behnen, Konrad
%A Neuhaus, Georg
%T Likelihood ratio rank tests for the two-sample problem with randomly censored data
%J Kybernetika
%D 1991
%P 81-99
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a0/
%G en
%F KYB_1991_27_2_a0
Behnen, Konrad; Neuhaus, Georg. Likelihood ratio rank tests for the two-sample problem with randomly censored data. Kybernetika, Tome 27 (1991) no. 2, pp. 81-99. http://geodesic.mathdoc.fr/item/KYB_1991_27_2_a0/

[1] K. Behnen, G. Neuhaus: Rank Tests with Estimated Scores and Their Application. Teubner, Stuttgart 1989. | MR | Zbl

[2] J. Hájek, Z. Šidák: Theory of Rank Tests. Academic Press, New York 1967. | MR

[3] A. Janssen: Local asymptotic normality for randomly censored models with applications to rank tests. Preprint 199, Univ. Siegen 1987. | MR

[4] A. Kudo: A multivariate analog of the one-sided test. Biometrika 50 (1963), 403 - 418. | MR

[5] G. Neuhaus: Asymptotically optimal rank tests for the two-sample problem with randomly censored data. Commun. Statist. - Theory Meth. 17 (1988), 6, 2037-7058. | Zbl

[6] P. E. Niiesch: On the problem of testing location in multivariate populations for restricted alternatives. Ann. Math. Statist. 37 (1966), 113-119. | MR

[7] P. E. Niiesch: Estimation of monotone parameters and the Kuhn-Tucker conditions. Ann. Math. Statist. 41 (1970), 1800.

[8] H. Strasser: Mathematical Theory of Statistics. de Gruyter, Berlin 1985. | MR | Zbl