Solution to the optimality equation in a class of Markov decision chains with the average cost criterion
Kybernetika, Tome 27 (1991) no. 1, pp. 23-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60J05, 90C40
@article{KYB_1991_27_1_a2,
     author = {Cavazos-Cadena, Rolando},
     title = {Solution to the optimality equation in a class of {Markov} decision chains with the average cost criterion},
     journal = {Kybernetika},
     pages = {23--37},
     year = {1991},
     volume = {27},
     number = {1},
     mrnumber = {1099512},
     zbl = {0734.90112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_1_a2/}
}
TY  - JOUR
AU  - Cavazos-Cadena, Rolando
TI  - Solution to the optimality equation in a class of Markov decision chains with the average cost criterion
JO  - Kybernetika
PY  - 1991
SP  - 23
EP  - 37
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_1_a2/
LA  - en
ID  - KYB_1991_27_1_a2
ER  - 
%0 Journal Article
%A Cavazos-Cadena, Rolando
%T Solution to the optimality equation in a class of Markov decision chains with the average cost criterion
%J Kybernetika
%D 1991
%P 23-37
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_1_a2/
%G en
%F KYB_1991_27_1_a2
Cavazos-Cadena, Rolando. Solution to the optimality equation in a class of Markov decision chains with the average cost criterion. Kybernetika, Tome 27 (1991) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/KYB_1991_27_1_a2/

[1] R. B. Ash: Real Analysis and Probability. Academic Press, New York 1972. | MR

[2] J. S. Baras D.-J. Ma, A. M. Makowski: K competing queues with geometric service requirements and linear costs: The fie rule is always optimal. Systems Control Lett. 6(1985), 3, 173-180. | MR

[3] P. Biliingsley: Convergence of Probability Measures. Wiley, New York 1968. | MR

[4] V. S. Borkar: On minimum cost per unit of time control of Markov chains. SIAM J. Control Optim. 22 (1984), 6, 965-978. | MR

[5] R. Cavazos-Cadena: Weak conditions for the existence of optimal stationary policies in average Markov decision chains with unbounded costs. Kybernetika 25 (1989), 3, 145- 156. | MR | Zbl

[6] R. Cavazos-Cadena, L. I. Sennott: Comparing recent assumptions for the existence of average optimal stationary policies (submitted for publication).

[7] K. Hinderer: Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin-Heidelberg-New York 1970. | MR | Zbl

[8] M. Loeve: Probability Theory I. Springer-Verlag, New York-Berlin -Heidelberg 1977. | MR | Zbl

[9] J. Munkres: Topology, a First Course. Prentice-Hall, Englewood Cliffs, New Jersey 1975. | MR | Zbl

[10] P. Nain, K. W. Ross: Optimal priority assignment with hard constraints. IEEE Trans. Automat. Control 5/(1986), 10, 883-888. | MR

[11] S. M. Ross: Applied Probability Models with Optimization Applications. Holden-Day, San Francisco, California 1970. | MR | Zbl

[12] L. I. Sennot: A new condition for the existence of optimal stationary policies in average cost Markov decision processes. Oper. Res. Lett. 5 (1986), 17 - 23. | MR

[13] L. I. Sennot: A new condition for the existence of optimum stationary policies in average cost Markov decision processes - unbounded cost case. Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece 1986, pp. 1719-1721.

[14] L. C Thomas: Connectedness conditions for denumerable state Markov decision processes. In: Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas and D. J. White, eds.), Academic Press, New York 1980, pp. 181 - 204.