@article{KYB_1991_27_1_a2,
author = {Cavazos-Cadena, Rolando},
title = {Solution to the optimality equation in a class of {Markov} decision chains with the average cost criterion},
journal = {Kybernetika},
pages = {23--37},
year = {1991},
volume = {27},
number = {1},
mrnumber = {1099512},
zbl = {0734.90112},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_1_a2/}
}
Cavazos-Cadena, Rolando. Solution to the optimality equation in a class of Markov decision chains with the average cost criterion. Kybernetika, Tome 27 (1991) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/KYB_1991_27_1_a2/
[1] R. B. Ash: Real Analysis and Probability. Academic Press, New York 1972. | MR
[2] J. S. Baras D.-J. Ma, A. M. Makowski: K competing queues with geometric service requirements and linear costs: The fie rule is always optimal. Systems Control Lett. 6(1985), 3, 173-180. | MR
[3] P. Biliingsley: Convergence of Probability Measures. Wiley, New York 1968. | MR
[4] V. S. Borkar: On minimum cost per unit of time control of Markov chains. SIAM J. Control Optim. 22 (1984), 6, 965-978. | MR
[5] R. Cavazos-Cadena: Weak conditions for the existence of optimal stationary policies in average Markov decision chains with unbounded costs. Kybernetika 25 (1989), 3, 145- 156. | MR | Zbl
[6] R. Cavazos-Cadena, L. I. Sennott: Comparing recent assumptions for the existence of average optimal stationary policies (submitted for publication).
[7] K. Hinderer: Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin-Heidelberg-New York 1970. | MR | Zbl
[8] M. Loeve: Probability Theory I. Springer-Verlag, New York-Berlin -Heidelberg 1977. | MR | Zbl
[9] J. Munkres: Topology, a First Course. Prentice-Hall, Englewood Cliffs, New Jersey 1975. | MR | Zbl
[10] P. Nain, K. W. Ross: Optimal priority assignment with hard constraints. IEEE Trans. Automat. Control 5/(1986), 10, 883-888. | MR
[11] S. M. Ross: Applied Probability Models with Optimization Applications. Holden-Day, San Francisco, California 1970. | MR | Zbl
[12] L. I. Sennot: A new condition for the existence of optimal stationary policies in average cost Markov decision processes. Oper. Res. Lett. 5 (1986), 17 - 23. | MR
[13] L. I. Sennot: A new condition for the existence of optimum stationary policies in average cost Markov decision processes - unbounded cost case. Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece 1986, pp. 1719-1721.
[14] L. C Thomas: Connectedness conditions for denumerable state Markov decision processes. In: Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas and D. J. White, eds.), Academic Press, New York 1980, pp. 181 - 204.