@article{KYB_1990_26_5_a4,
author = {Luk\v{s}an, Ladislav},
title = {Computational experience with improved variable metric methods for unconstrained minimization},
journal = {Kybernetika},
pages = {415--431},
year = {1990},
volume = {26},
number = {5},
mrnumber = {1079679},
zbl = {0716.65055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a4/}
}
Lukšan, Ladislav. Computational experience with improved variable metric methods for unconstrained minimization. Kybernetika, Tome 26 (1990) no. 5, pp. 415-431. http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a4/
[1] M. C. Biggs: Minimization algorithms making use of nonquadratic properties of the objective function. J. Inst. Maths. Applies. 8 (1971), 315-327.
[2] C. G. Broyden: The convergence of a class of double rank minimization algorithms, Part 1: general considerations. Part 2: the new algorithm. J. Inst. Maths. Applies. 6 (1970), 76 - 90, 222-231. | MR
[3] R. H. Byrd J. Nocedal, Y. X. Yuan: Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal. 24 (1987), 1171-1190. | MR
[4] A. R. Conn N. I. M. Gould, P. L. Toint: Testing a class of methods for solving minimzation problems with simple bounds on the variables. Math. Comp. 50 (1988), 399 - 430. | MR
[5] L. C. W. Dixon: Variable metric algorithms: Necessary and sufficient conditions for identical behavior of nonquadratic functions. J. Optim. Theory Appl. 10 (1972), 34 - 40. | MR
[6] R. Fletcher: A new approach to variable metric algorithms. Comput. J. 13 (1979), 317-322.
[7] R. Fletcher: Practical Methods of Optimization. Vol. 1 Unconstrained Optimization. J. Wiley \& sons, New York 1980. | MR | Zbl
[8] P. E. Gill W. Murray, M. Saunders: Methods for computing and modifying the LDV factors of a matrix. Math. Comp. 29 (1974), 1051-1077. | MR
[9] D. Goldfarb: A family of variable metric algorithms derived by variational means. Math. Comp. 24(1970), 23-26. | MR
[10] A. Griewank, P. L. Toint: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math. 39 (1982), 429-448. | MR | Zbl
[11] H. Kleinmichel: Quasi-Newton Verfahren vom Rang-Eins-Typ zur Lösung unrestringierter Minimierungsprobleme. Teil 1: Verfahren und grundlegende Eigenschaften. Teil 2: N-Schritt-quadratische Konvergenz fur Restart-Varianten. Numer. Math. 38 (1981), 219-228, 229-244. | Zbl
[12] D. G. McDowell: Conditions of variable metric algorithms to be conjugate gradient algo- rithms. J. Optim. Theory Appl. 41 (1983), 439 - 450. | MR
[13] J. J. More B. S. Garbow, K. E. Hillstrom: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. | MR
[14] S. S. Oren, and D. C. Luenberger: Self-scaling variable metric (SSVM) algorithms. Part 1: Criteria and sufficient conditions for-scaling a class of algorithms. Part 2: Implementation and experiments. Management Sci. 20 (1974), 845 - 862, 863-874. | MR
[15] S. S. Oren, E. Spedicato: Optimal conditioning of self scaling variable metric algorithms. Math. Programming 10 (1976), 70 - 90. | MR | Zbl
[16] M. R. Osborne, L. P. Sun: A New Approach to the Symmetric Rank-One Updating Algorithm. Rept. No. NMO/01, Australian National University School of Mathematics, December 1988.
[17] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization. Math. Comp. 24 (1970), 647-656. | MR
[18] D. F. Shanno, K. J. Phua: Matrix conditioning and nonlinear optimization. Math. Programming 14 (1978), 144- 160. | MR | Zbl
[19] E. Spedicato: A class of rank-one positive definite quasi-Newton updates for unconstrained minimization. Math. Operationsforsch. Statist., Ser. Optimization 14 (1983), 61 - 70. | MR | Zbl
[20] J. Stoer: On the convergence rate of imperfect minimization algorithms in Broydeu's $\beta$-class. Math. Programming 9 (1975), 313-335. | MR
[21] Y. Zhang, R. P. Tewarson: Least-change updates to Cholesky factors subject to the nonlinear quasi-Newton condition. IMA J. Numer. Anal. 7 (1987), 509-521. | MR | Zbl
[22] Y. Zhang, R. P. Tewarson: Quasi-Newton algorithms with updates from the preconvex part of Broyden's family. IMA J. Numer. Anal. 8 (1988), 487-509. | MR | Zbl