Computational experience with improved variable metric methods for unconstrained minimization
Kybernetika, Tome 26 (1990) no. 5, pp. 415-431 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65K05, 90C30
@article{KYB_1990_26_5_a4,
     author = {Luk\v{s}an, Ladislav},
     title = {Computational experience with improved variable metric methods for unconstrained minimization},
     journal = {Kybernetika},
     pages = {415--431},
     year = {1990},
     volume = {26},
     number = {5},
     mrnumber = {1079679},
     zbl = {0716.65055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a4/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
TI  - Computational experience with improved variable metric methods for unconstrained minimization
JO  - Kybernetika
PY  - 1990
SP  - 415
EP  - 431
VL  - 26
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a4/
LA  - en
ID  - KYB_1990_26_5_a4
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%T Computational experience with improved variable metric methods for unconstrained minimization
%J Kybernetika
%D 1990
%P 415-431
%V 26
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a4/
%G en
%F KYB_1990_26_5_a4
Lukšan, Ladislav. Computational experience with improved variable metric methods for unconstrained minimization. Kybernetika, Tome 26 (1990) no. 5, pp. 415-431. http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a4/

[1] M. C. Biggs: Minimization algorithms making use of nonquadratic properties of the objective function. J. Inst. Maths. Applies. 8 (1971), 315-327.

[2] C. G. Broyden: The convergence of a class of double rank minimization algorithms, Part 1: general considerations. Part 2: the new algorithm. J. Inst. Maths. Applies. 6 (1970), 76 - 90, 222-231. | MR

[3] R. H. Byrd J. Nocedal, Y. X. Yuan: Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal. 24 (1987), 1171-1190. | MR

[4] A. R. Conn N. I. M. Gould, P. L. Toint: Testing a class of methods for solving minimzation problems with simple bounds on the variables. Math. Comp. 50 (1988), 399 - 430. | MR

[5] L. C. W. Dixon: Variable metric algorithms: Necessary and sufficient conditions for identical behavior of nonquadratic functions. J. Optim. Theory Appl. 10 (1972), 34 - 40. | MR

[6] R. Fletcher: A new approach to variable metric algorithms. Comput. J. 13 (1979), 317-322.

[7] R. Fletcher: Practical Methods of Optimization. Vol. 1 Unconstrained Optimization. J. Wiley \& sons, New York 1980. | MR | Zbl

[8] P. E. Gill W. Murray, M. Saunders: Methods for computing and modifying the LDV factors of a matrix. Math. Comp. 29 (1974), 1051-1077. | MR

[9] D. Goldfarb: A family of variable metric algorithms derived by variational means. Math. Comp. 24(1970), 23-26. | MR

[10] A. Griewank, P. L. Toint: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math. 39 (1982), 429-448. | MR | Zbl

[11] H. Kleinmichel: Quasi-Newton Verfahren vom Rang-Eins-Typ zur Lösung unrestringierter Minimierungsprobleme. Teil 1: Verfahren und grundlegende Eigenschaften. Teil 2: N-Schritt-quadratische Konvergenz fur Restart-Varianten. Numer. Math. 38 (1981), 219-228, 229-244. | Zbl

[12] D. G. McDowell: Conditions of variable metric algorithms to be conjugate gradient algo- rithms. J. Optim. Theory Appl. 41 (1983), 439 - 450. | MR

[13] J. J. More B. S. Garbow, K. E. Hillstrom: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. | MR

[14] S. S. Oren, and D. C. Luenberger: Self-scaling variable metric (SSVM) algorithms. Part 1: Criteria and sufficient conditions for-scaling a class of algorithms. Part 2: Implementation and experiments. Management Sci. 20 (1974), 845 - 862, 863-874. | MR

[15] S. S. Oren, E. Spedicato: Optimal conditioning of self scaling variable metric algorithms. Math. Programming 10 (1976), 70 - 90. | MR | Zbl

[16] M. R. Osborne, L. P. Sun: A New Approach to the Symmetric Rank-One Updating Algorithm. Rept. No. NMO/01, Australian National University School of Mathematics, December 1988.

[17] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization. Math. Comp. 24 (1970), 647-656. | MR

[18] D. F. Shanno, K. J. Phua: Matrix conditioning and nonlinear optimization. Math. Programming 14 (1978), 144- 160. | MR | Zbl

[19] E. Spedicato: A class of rank-one positive definite quasi-Newton updates for unconstrained minimization. Math. Operationsforsch. Statist., Ser. Optimization 14 (1983), 61 - 70. | MR | Zbl

[20] J. Stoer: On the convergence rate of imperfect minimization algorithms in Broydeu's $\beta$-class. Math. Programming 9 (1975), 313-335. | MR

[21] Y. Zhang, R. P. Tewarson: Least-change updates to Cholesky factors subject to the nonlinear quasi-Newton condition. IMA J. Numer. Anal. 7 (1987), 509-521. | MR | Zbl

[22] Y. Zhang, R. P. Tewarson: Quasi-Newton algorithms with updates from the preconvex part of Broyden's family. IMA J. Numer. Anal. 8 (1988), 487-509. | MR | Zbl