Some asymptotic results for robust procedures for testing the constancy of regression models over time
Kybernetika, Tome 26 (1990) no. 5, pp. 392-403 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62E20, 62F05, 62F35, 62J05
@article{KYB_1990_26_5_a2,
     author = {Hu\v{s}kov\'a, Marie},
     title = {Some asymptotic results for robust procedures for testing the constancy of regression models over time},
     journal = {Kybernetika},
     pages = {392--403},
     year = {1990},
     volume = {26},
     number = {5},
     mrnumber = {1079677},
     zbl = {0722.62024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a2/}
}
TY  - JOUR
AU  - Hušková, Marie
TI  - Some asymptotic results for robust procedures for testing the constancy of regression models over time
JO  - Kybernetika
PY  - 1990
SP  - 392
EP  - 403
VL  - 26
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a2/
LA  - en
ID  - KYB_1990_26_5_a2
ER  - 
%0 Journal Article
%A Hušková, Marie
%T Some asymptotic results for robust procedures for testing the constancy of regression models over time
%J Kybernetika
%D 1990
%P 392-403
%V 26
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a2/
%G en
%F KYB_1990_26_5_a2
Hušková, Marie. Some asymptotic results for robust procedures for testing the constancy of regression models over time. Kybernetika, Tome 26 (1990) no. 5, pp. 392-403. http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a2/

[1] J. Antoch, M. Hušková: Some M-tests for detection of a change in linear models. In: Proceedings of the Fourth Prague Symposium on Asymptotic Statistics (P. Mandl, M. Hušková, eds.), Charles University, Prague 1989, pp. 123-136. | MR

[2] R. L. Brown J. Durbin, J. M. Evans: Techniques for testing the constancy of regression relationships over time (with discussion). J. Roy. Statist. Soc. Ser. B 37 (1975), 149-182. | MR

[3] M. Csörgö, L. Horváth: Nonparametric methods for changepoint problems. Handbook of Statistics, vol. 7 (P. R. Krishnaiah and C. R. Rao, eds.). North Holland, Amsterdam 1988, pp. 403-425. | MR

[4] D. A. Darling, P. Erdös: A limit theorem for the maximum of normalized sums of independent random variables. Duke Math. J. 23 (1956), 143-155. | MR

[5] P. Hackl: Testing the Constancy of Regression Models over Time. Vandenhoeck and Ruprecht, Gottingen 1980. | MR | Zbl

[6] M. Hušková: Stochastic approximation type estimators in linear models. Submitted, 1989.

[7] M. Hušková: Recursive M-tests for change point problem. In: Structural Change: Analysis and Forecasting (A. H. Westlund, ed.), School of Economics, Stockholm 1989.

[8] M. Hušková, P. K. Sen: Nonparametric tests for shift and change in regression at an unknown time point. In: The Future of the World Economy: Economic Growth and Structural Changes (P. Hackl, ed.), Springer-Verlag, Berlin-Heidelberg-New York 1989, pp. 73-87.

[9] P. R. Krishnaiah, B. Q. Miao: Review estimates about change point. Handbook of Statistics, vol. 7 (P. R. Krishnaiah and C R. Rao, eds.). North Holland, Amsterdam 1988, pp. 390-402.

[10] V. V.Petrov: Sums of Independent Random Variables. Springer-Verlag, Berlin-Heidelberg - New York 1975. | MR | Zbl

[11] P. K. Sen: Recursive M-tests for the constancy of multivariate regression relationships overtime. Sequential Anal. 5(1984), 191 - 211. | MR

[12] S. Zacks: Survey of classical and Bayesian approaches to the change point problem: fixed sample and sequential procedures of testing and estimation. In: Recent Advances in Statistics. Papers in Honour of Herman Chernoff's Sixtieth Birthday, Acad. Press, New York, 1983, pp. 245-269. | MR | Zbl