A non-ergodic version of Rudolph's theorem
Kybernetika, Tome 26 (1990) no. 5, pp. 373-391 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28D10, 28D20
@article{KYB_1990_26_5_a1,
     author = {Krutina, Miroslav},
     title = {A non-ergodic version of {Rudolph's} theorem},
     journal = {Kybernetika},
     pages = {373--391},
     year = {1990},
     volume = {26},
     number = {5},
     mrnumber = {1079676},
     zbl = {0719.28009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a1/}
}
TY  - JOUR
AU  - Krutina, Miroslav
TI  - A non-ergodic version of Rudolph's theorem
JO  - Kybernetika
PY  - 1990
SP  - 373
EP  - 391
VL  - 26
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a1/
LA  - en
ID  - KYB_1990_26_5_a1
ER  - 
%0 Journal Article
%A Krutina, Miroslav
%T A non-ergodic version of Rudolph's theorem
%J Kybernetika
%D 1990
%P 373-391
%V 26
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a1/
%G en
%F KYB_1990_26_5_a1
Krutina, Miroslav. A non-ergodic version of Rudolph's theorem. Kybernetika, Tome 26 (1990) no. 5, pp. 373-391. http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a1/

[1] W. Ambrose: Representation of ergodic flows. Ann. of Math. 42 (1941), 723 - 739. | MR | Zbl

[2] W. Ambrose, S. Kakutani: Structure and continuity of measurable flows. Duke Math. J. 9(1942), 25-42. | MR | Zbl

[3] M. Denker, Ch. Grillenberger, K. Sigmund: Ergodic Theory on Compact Spaces. (Lecture Notes in Mathematics 527.) Springer-Verlag, Berlin-Heidelberg -New York 1976. | MR | Zbl

[4] Y. Katznelson, B. Weiss: Commuting measure-preserving transformations. Israel J. Math. 72(1972), 161-173. | MR | Zbl

[5] U. Krengel: Darstellungssätze für Strömungen und Halbströmungen I. Math. Ann. 776 (1968), 181-190. | MR | Zbl

[6] U. Krengel: Recent results on generators in ergodic theory. In: Trans. Sixth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Academia, Prague 1973, pp. 465-482. | MR | Zbl

[7] U. Krengel: On Rudolph's representation of aperiodic flows. Ann. Inst. H. Poincaré Prob. Statist. 72fi(1976), 319-338. | MR | Zbl

[8] M. Krutina: Asymptotic rate of a flow. Comment. Math. Univ. Carolin. 30 (1989), 23 - 31. | MR | Zbl

[9] M. Krutina: A note on the relation between asymptotic rates of a flow under a function and its basis-automorphism. Comment. Math. Univ. Carolin. 30 (1989), 721 - 726. | MR | Zbl

[10] D. Rudolph: A two-valued step coding for ergodic flows. Math. Zeitschrift 150 (1976), 201-220. | MR | Zbl

[11] K. Winkelbauer: On discrete information sources. In: Trans. Third Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Publ. House Czechosl. Acad. Sci, Prague 1964, pp. 765-830. | MR | Zbl

[12] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving transformations. Comment. Math. Univ. Carolin. 75(1977), 782-812. | MR | Zbl