@article{KYB_1990_26_5_a1,
author = {Krutina, Miroslav},
title = {A non-ergodic version of {Rudolph's} theorem},
journal = {Kybernetika},
pages = {373--391},
year = {1990},
volume = {26},
number = {5},
mrnumber = {1079676},
zbl = {0719.28009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a1/}
}
Krutina, Miroslav. A non-ergodic version of Rudolph's theorem. Kybernetika, Tome 26 (1990) no. 5, pp. 373-391. http://geodesic.mathdoc.fr/item/KYB_1990_26_5_a1/
[1] W. Ambrose: Representation of ergodic flows. Ann. of Math. 42 (1941), 723 - 739. | MR | Zbl
[2] W. Ambrose, S. Kakutani: Structure and continuity of measurable flows. Duke Math. J. 9(1942), 25-42. | MR | Zbl
[3] M. Denker, Ch. Grillenberger, K. Sigmund: Ergodic Theory on Compact Spaces. (Lecture Notes in Mathematics 527.) Springer-Verlag, Berlin-Heidelberg -New York 1976. | MR | Zbl
[4] Y. Katznelson, B. Weiss: Commuting measure-preserving transformations. Israel J. Math. 72(1972), 161-173. | MR | Zbl
[5] U. Krengel: Darstellungssätze für Strömungen und Halbströmungen I. Math. Ann. 776 (1968), 181-190. | MR | Zbl
[6] U. Krengel: Recent results on generators in ergodic theory. In: Trans. Sixth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Academia, Prague 1973, pp. 465-482. | MR | Zbl
[7] U. Krengel: On Rudolph's representation of aperiodic flows. Ann. Inst. H. Poincaré Prob. Statist. 72fi(1976), 319-338. | MR | Zbl
[8] M. Krutina: Asymptotic rate of a flow. Comment. Math. Univ. Carolin. 30 (1989), 23 - 31. | MR | Zbl
[9] M. Krutina: A note on the relation between asymptotic rates of a flow under a function and its basis-automorphism. Comment. Math. Univ. Carolin. 30 (1989), 721 - 726. | MR | Zbl
[10] D. Rudolph: A two-valued step coding for ergodic flows. Math. Zeitschrift 150 (1976), 201-220. | MR | Zbl
[11] K. Winkelbauer: On discrete information sources. In: Trans. Third Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Publ. House Czechosl. Acad. Sci, Prague 1964, pp. 765-830. | MR | Zbl
[12] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving transformations. Comment. Math. Univ. Carolin. 75(1977), 782-812. | MR | Zbl