Estimation of a centrality parameter and random sampling time. I. Necessary conditions for optimality
Kybernetika, Tome 26 (1990) no. 1, pp. 67-78 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62M09, 62M10, 62M99
@article{KYB_1990_26_1_a4,
     author = {Deniau, Claude and Oppenheim, Georges and Viano, Marie-Claude},
     title = {Estimation of a centrality parameter and random sampling time. {I.} {Necessary} conditions for optimality},
     journal = {Kybernetika},
     pages = {67--78},
     year = {1990},
     volume = {26},
     number = {1},
     mrnumber = {1042232},
     zbl = {0719.62097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a4/}
}
TY  - JOUR
AU  - Deniau, Claude
AU  - Oppenheim, Georges
AU  - Viano, Marie-Claude
TI  - Estimation of a centrality parameter and random sampling time. I. Necessary conditions for optimality
JO  - Kybernetika
PY  - 1990
SP  - 67
EP  - 78
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a4/
LA  - en
ID  - KYB_1990_26_1_a4
ER  - 
%0 Journal Article
%A Deniau, Claude
%A Oppenheim, Georges
%A Viano, Marie-Claude
%T Estimation of a centrality parameter and random sampling time. I. Necessary conditions for optimality
%J Kybernetika
%D 1990
%P 67-78
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a4/
%G en
%F KYB_1990_26_1_a4
Deniau, Claude; Oppenheim, Georges; Viano, Marie-Claude. Estimation of a centrality parameter and random sampling time. I. Necessary conditions for optimality. Kybernetika, Tome 26 (1990) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a4/

[1] T. W. Anderson: Statistical Analysis of Time Series. J. Wiley, New York 1971. | MR | Zbl

[2] H. Cartan: Cours de Calcul Differentiel. Hermann, Paris 1977. | MR | Zbl

[3] CI. Deniau G. Oppenheim, M. CI. Viano: Préservation de la minimalité par échantillonnage aléatoire. C. R. Acad. Sci. Paris Sér. I. Math. 299 (1984), 1001-1004. | MR

[4] CI. Deniau G. Oppenheim, M. CI. Viano: Time random sampling. Prepublication 86 T Université Paris Sud, 1986. Submitted to publication.

[5] N. Dunford, J. T. Schwartz: Linear Operator, Volume 1. J. Wiley, New York 1957.

[6] G. C. Goodwin, R. L. Payne: Choice of sampling intervals in systems identification. In: Advances and Case Studies (R. K. Mehra, D. G. Lainiotis, eds.), Academic Press, New York 1976. | MR

[7] P. Mac-Dunnough, D. Wolfson: On some sampling schemes for estimating the parameter of continuous time series. Ann. Inst. Statist. Math. 31 (1979), part A, 487-497. | MR

[8] G. Oppenheim: Echantillonnage aléatoire d'un processus ARMA. C. R. Acad. Sci. Paris Ser. I. Math. 295 (1982), 403-406. | MR | Zbl

[9] G. Oppenheim: These d'Etat. Université Paris V, 1983.

[10] J. C. Pomerol: Application de la programmation convexe a la programmation différentiable. C. R. Acad. Sci. Paris Sér. I. Math. 288 (1979), 1041-1044. | MR | Zbl

[11] P. M. Robinson: Continuous models fitting from discrete data. In: Direction in Time Series (Brillinger, ed.), 1978, pp. 263-278. | MR

[12] R. T. Rockafellar: Directionally lipschitzian functions and sub differential calculus. Proc. London Math. Soc. (3) 39 (1979), 331-335. | MR

[13] W. Rudin: Analyse reelle et complexe. Masson, Paris 1975. | MR | Zbl

[14] J. Stoyanov: Problem of estimation in continuous discrete stochatic models. In: Proc. 7th Conf. on Probab. Theory Braşov, 1982 (M. Iosifescu, ed.), Editura Academiei RSR, Bucharest 1984. | MR

[15] Y. Taga: The optimal sampling procedure for estimating the mean of stationary Markov processes. Ann. Inst. Statist. MAth 17 (1965), 105 - 112. | MR | Zbl