Design of spline-based self-tuners
Kybernetika, Tome 26 (1990) no. 1, pp. 17-30 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49N70, 49N75, 93B30, 93B50, 93C05, 93C15, 93C40
@article{KYB_1990_26_1_a1,
     author = {K\'arn\'y, Miroslav and Nagy, Ivan and B\"ohm, Josef and Halouskov\'a, Alena},
     title = {Design of spline-based self-tuners},
     journal = {Kybernetika},
     pages = {17--30},
     year = {1990},
     volume = {26},
     number = {1},
     zbl = {0712.93030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a1/}
}
TY  - JOUR
AU  - Kárný, Miroslav
AU  - Nagy, Ivan
AU  - Böhm, Josef
AU  - Halousková, Alena
TI  - Design of spline-based self-tuners
JO  - Kybernetika
PY  - 1990
SP  - 17
EP  - 30
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a1/
LA  - en
ID  - KYB_1990_26_1_a1
ER  - 
%0 Journal Article
%A Kárný, Miroslav
%A Nagy, Ivan
%A Böhm, Josef
%A Halousková, Alena
%T Design of spline-based self-tuners
%J Kybernetika
%D 1990
%P 17-30
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a1/
%G en
%F KYB_1990_26_1_a1
Kárný, Miroslav; Nagy, Ivan; Böhm, Josef; Halousková, Alena. Design of spline-based self-tuners. Kybernetika, Tome 26 (1990) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/KYB_1990_26_1_a1/

[1] G. J. Bierman: Factorization Methods for Discrete Sequential Estimation. Academic Press, New York 1977. | MR | Zbl

[2] J. Böhm, M. Karny: Self-tuning regulators with restricted inputs. Kybernetika 18 (1982), 6, 529-544.

[3] J. Böhm: LQ self-tuners with signal level constraints. 7th Symp. Identification and Parameter Estimation, York, UK, preprints 1 (1985), 131 - 137.

[4] Ching-Tien, C. Yi-Shyong: Piecewise linear polynomial functions and applications to an analysis and parameter identification. Internat. J. Systems Sci. 75(1987), 10, 1919-1929. | MR

[5] L. Ching-Tien, C. Yi-Shyong: Operational matrices of piecewise linear polynomial functions with application to linear time-varying systems. Internat. J. Systems Sci. 18 (1987), 10, 1931-1942. | MR | Zbl

[6] P. J. Gawthrop: Continuous-time self-tuning control. A unified approach. In: Proc. of 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing, Lund, Sweden (1986), 19-24.

[7] G. C. Goodwin: Some observations on robust estimation and control. 7th Symp. Identification and Parameter Estimation, York, UK, preprints 1 (1985), 851 - 859.

[8] M. Kárný: Algorithms for determining the model structure of a controlled system. Kyber- netika 19 (1973), 2, 164-178.

[9] M. Kárný: Quantification of prior knowledge about global characteristics of linear normal model. Kybernetika 20 (1984), 5, 376-385. | MR

[10] M. Kárný A. Halousková J. Bohm R. Kulhavý, P. Nedoma: Design of linear quadratic adaptive control: Theory and algorithms for practice. Supplement to Kybernetika 21 (1985), No. 3-6.

[11] M. Kárnž A. Halousková, I. Nagy: Modelling, identification and adaptive control of cross-direction basis weight of paper sheets. Internat. Conf. CONTROL 88, Oxford 1988, 159-164.

[12] M. Kárný, R. Kulhavý: Structure determination of regression-type models for adaptive prediction and control. In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988.

[13] N. P. Korneichuk: Splines in the Approximation Theory (in Russian). Nauka, Moscow 1984. | MR

[14] R. Kulhavý: Restricted exponential forgetting in real-time identification. Automatica 23 (1987), 5, 598-600. | MR

[15] V. Peterka: Bayesian system identification. In: Trends and Progress in System Identification (P. Eykhoff,ed.),Pergamon Press, Oxford 1981, 239-304. | MR | Zbl

[16] V. Peterka: Algorithms for LQG self-tuning control. In: Proc. of 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing Lund, 1986, Sweden, 13-18.

[17] J. Richalet: Why predictive control?. 10th IFAC World Congress on Automatic Control 1987, preprint vol. 11. 7.

[18] R. Kohn, C. F. Ansley: Equivalence between Bayesian smoothness priors and optimal smoothing for function estimation. In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988. | Zbl