One possibility of multidimensional control system design
Kybernetika, Tome 25 (1989) no. 6, pp. 509-522 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49N10, 93B50, 93B51, 93C05, 93C35, 93C55
@article{KYB_1989_25_6_a8,
     author = {Strejc, Vladim{\'\i}r},
     title = {One possibility of multidimensional control system design},
     journal = {Kybernetika},
     pages = {509--522},
     year = {1989},
     volume = {25},
     number = {6},
     mrnumber = {1035156},
     zbl = {0703.93031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a8/}
}
TY  - JOUR
AU  - Strejc, Vladimír
TI  - One possibility of multidimensional control system design
JO  - Kybernetika
PY  - 1989
SP  - 509
EP  - 522
VL  - 25
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a8/
LA  - en
ID  - KYB_1989_25_6_a8
ER  - 
%0 Journal Article
%A Strejc, Vladimír
%T One possibility of multidimensional control system design
%J Kybernetika
%D 1989
%P 509-522
%V 25
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a8/
%G en
%F KYB_1989_25_6_a8
Strejc, Vladimír. One possibility of multidimensional control system design. Kybernetika, Tome 25 (1989) no. 6, pp. 509-522. http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a8/

[1] W. F. Arnold, A. J. Laub: Generalized eigenproblem algorithm and software for algebraic Riccati equations. Proc. IEEE 72 (1984), 12, 1746-1754.

[2] J. G. F. Francis: The QR transformation, Parts I and II. Comput. J. 4 (1961-1962), 265-271 and 332-345.

[3] B. S. Garbov, al.: Matrix Eigensystem Routines -- EISPACK Guide Extension. (Lecture Notes in Computer Science 5.) Springer-Verlag, Berlin--Heidelberg--New York 1977. | MR

[4] V. Kučera: The discrete Riccati equation of optimal control. Kybernetika 8 (1972), 5, 430-447. | MR

[5] A. J. Laub: A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control AC-24 (1979), 6, 913-921. | MR | Zbl

[6] A. J. Laub: Numerical linear algebra aspects of control design computations. IEEE Trans. Automat. Control AC-30 (1985), 2, 97-108. | MR | Zbl

[7] T. Pappas A. J. Laub, N. R. Sandell: On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Automat. Control AC-25 (1980), 4, 631-641. | MR

[8] B. N. Parlett, C. Reinsch: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer. Math. 13 (1969), 293-304. | MR | Zbl

[9] J. E. Potter: Matrix quadratic solutions. SIAM J. Appl. Math. 14 (1966), 3, 496-501. | MR | Zbl

[10] B. T. Smith, al.: Matrix Eigensystem Routines -- EISPACK Guide. (Lecture Notes in Computer Science 6.) Springer-Verlag, Berlin--Heidelberg--New York 1976. | MR | Zbl

[11] G. W. Stewart: Introduction to Matrix Computations. Academic Press, New York 1976. | MR

[12] V. Strejc: Discrete version of model-in-the-system control. Problems Control Inform. Theory 17 (1988), 2, 71-76. | MR | Zbl

[13] V. Strejc: State Space Theory of Discrete Linear Control. John Wiley and Sons, Chichester 1981. | MR | Zbl

[14] D. R. Vaugham: A nonrecursive algebraic solution for the discrete Riccati equation. IEEE Trans. Automat. Control AC-15 (1970), 597-599.