On the equivalence of two methods for interpolation
Kybernetika, Tome 25 (1989) no. 6, pp. 461-466 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60G25, 60G35, 62M20
@article{KYB_1989_25_6_a2,
     author = {Budinsk\'y, Petr},
     title = {On the equivalence of two methods for interpolation},
     journal = {Kybernetika},
     pages = {461--466},
     year = {1989},
     volume = {25},
     number = {6},
     mrnumber = {1035152},
     zbl = {0711.62084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a2/}
}
TY  - JOUR
AU  - Budinský, Petr
TI  - On the equivalence of two methods for interpolation
JO  - Kybernetika
PY  - 1989
SP  - 461
EP  - 466
VL  - 25
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a2/
LA  - en
ID  - KYB_1989_25_6_a2
ER  - 
%0 Journal Article
%A Budinský, Petr
%T On the equivalence of two methods for interpolation
%J Kybernetika
%D 1989
%P 461-466
%V 25
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a2/
%G en
%F KYB_1989_25_6_a2
Budinský, Petr. On the equivalence of two methods for interpolation. Kybernetika, Tome 25 (1989) no. 6, pp. 461-466. http://geodesic.mathdoc.fr/item/KYB_1989_25_6_a2/

[1] J. Anděl: Statistical Analysis of Time Series. SNTL, Prague 1976. In Czech.

[2] S. R. Brubacher, T. G. Wilson: Interpolating time series with application to the estimation of holiday effects on electricity demand. Appl. Statist. 25 (1976), 107-116.

[3] A. M. Jaglom: Vveděnije v těoriju stacionarnych slučajnych funkcij. Usp. mat. nauk 7 (1952), vyp. 5 (51), 3-168.

[4] Ju. A. Rozanov: Stacionarnyje slučajnyje processy. Gos. izd., Moskva 1963.