AR(1) processes with given moments of marginal distribution
Kybernetika, Tome 25 (1989) no. 5, pp. 337-347 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62M10
@article{KYB_1989_25_5_a0,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {AR(1) processes with given moments of marginal distribution},
     journal = {Kybernetika},
     pages = {337--347},
     year = {1989},
     volume = {25},
     number = {5},
     mrnumber = {1024709},
     zbl = {0701.62087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1989_25_5_a0/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - AR(1) processes with given moments of marginal distribution
JO  - Kybernetika
PY  - 1989
SP  - 337
EP  - 347
VL  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1989_25_5_a0/
LA  - en
ID  - KYB_1989_25_5_a0
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T AR(1) processes with given moments of marginal distribution
%J Kybernetika
%D 1989
%P 337-347
%V 25
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1989_25_5_a0/
%G en
%F KYB_1989_25_5_a0
Anděl, Jiří. AR(1) processes with given moments of marginal distribution. Kybernetika, Tome 25 (1989) no. 5, pp. 337-347. http://geodesic.mathdoc.fr/item/KYB_1989_25_5_a0/

[1] N. I. Achiezer: Klassičeskaja problema momentov i nekotoryje voprosy analiza svjazannyje s neju. Gos. izd. fiz.-mat. lit., Moskva 1961.

[2] J. Anděl: Marginal distributions of autoregressive processes. In: Trans. Ninth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1983, pp. 127-135. | MR

[3] J. Anděl: On linear processes with given moments. J. Time Ser. Anal. 8 (1987), 373-378. | MR

[4] J. Anděl, M. Garrido: On stationary distributions of some time series models. In: Trans. Tenth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1988, pp. 193-202. | MR

[5] J. Anděl, V. Dupač: An extension of the Borel lemma. Comment. Math. Univ. Carolin. 32 (1989), 405-407. | MR

[6] J. Anděl, K. Zvára: Simulation methods in time series. In: Proc. 2nd Internat. Symp. on Numerical Analysis, Prague 1987 (I. Marek, ed.). Teubner-Texte zur Mathematik 107, Teubner, Leipzig 1988, pp. 99-113. | MR

[7] G. P. Chamitov: Imitacija slučajnych processov. Izd. Irkutskogo instituta narodnogo chozjajstva, Irkutsk 1983.

[8] D. P. Gaver, P. A. W. Lewis: First-order autoregressive gamma sequences and point processes. Adv. Appl. Probab. 12 (1980), 727-745. | MR | Zbl

[9] M. T. Krejn, A. A. Nudelman: Problema momentov Markova i ekstremalnyje zadači. Izd. Nauka, Moskva 1973. | MR

[10] M. T. Krein, A. A. Nudelman: The Markov Moment Problem and Extremal Problems. (Transl. of Math. Monographs, Vol. 50.) American Mathematical Society, Providence 1977. | MR

[11] A. J. Lawrance, P. A. W. Lewis: Modelling and residual analysis of nonlinear autoregressive time series in exponential variables. J. Roy. Statist. Soc. Ser. B 47 (1985), 165-202. | MR | Zbl

[12] J. S. Ramberg E. J. Dudewicz P. R. Tadikamalla, E. F. Mykytka: A probability distribution and its uses in fitting data. Technometrics 21 (1979), 201-214.

[13] M. M. Sondhi: Random processes with specified spectral density and first-order probability density. Bell System Technical J. 62 (1983), 679-701.