Test for submodel in Gibbs-Markov binary random sequence
Kybernetika, Tome 25 (1989) no. 3, pp. 200-208 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11K31, 60J99, 60K35, 62M02, 62M05, 82A99, 82B05
@article{KYB_1989_25_3_a4,
     author = {Jan\v{z}ura, Martin},
     title = {Test for submodel in {Gibbs-Markov} binary random sequence},
     journal = {Kybernetika},
     pages = {200--208},
     year = {1989},
     volume = {25},
     number = {3},
     mrnumber = {1010182},
     zbl = {0674.60094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1989_25_3_a4/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - Test for submodel in Gibbs-Markov binary random sequence
JO  - Kybernetika
PY  - 1989
SP  - 200
EP  - 208
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1989_25_3_a4/
LA  - en
ID  - KYB_1989_25_3_a4
ER  - 
%0 Journal Article
%A Janžura, Martin
%T Test for submodel in Gibbs-Markov binary random sequence
%J Kybernetika
%D 1989
%P 200-208
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1989_25_3_a4/
%G en
%F KYB_1989_25_3_a4
Janžura, Martin. Test for submodel in Gibbs-Markov binary random sequence. Kybernetika, Tome 25 (1989) no. 3, pp. 200-208. http://geodesic.mathdoc.fr/item/KYB_1989_25_3_a4/

[1] Y. M. M. Bishop S. E. Fienberg, P. W. Holland: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, Mass. 1975. | MR

[2] R. L. Dobrushin: Conditions of absence of phase transitions for one-dimensional classical model. Mat. Sbornik 93 (1974), 29-49. In Russian. | MR

[3] R. L. Dobrushin, B. S. Nahapetian: Strong convexity of the pressure for lattice systems of classical statistical physics. Teoret. Mat. Fiz. 20 (1974), 223-234. In Russian. | MR

[4] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976. | MR | Zbl

[5] M. Janžura: Estimating interactions in binary data sequences. Kybernetika 22 (1986), 277-284. | MR

[6] M. Janžura: Estimating interactions in binary lattice data with nearest-neighbor property. Kybernetika 23 (1987), 136-142. | MR

[7] H. Künsch: Decay of correlations under Dobrushin's uniqueness condition and its applications. Commun. Math. Phys. 84 (1982), 207-222. | MR | Zbl

[8] C. Preston: Random Fields. Lecture Notes in Mathematics 534. Springer-Verlag, Berlin--Heidelberg--New York 1976. | MR | Zbl

[9] C. R. Rao: Linear Statistical Inference and its Applications. John Wiley and Sons, New York 1973. | MR | Zbl

[10] D. Ruelle: Statistical Mechanics. Rigorous Results. Benjamin, New York 1969. | MR | Zbl