Conditions for a constrained system to have a set of impulse energy measures
Kybernetika, Tome 25 (1989) no. 1, pp. 45-59 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B15, 93B25, 93B30, 93C05
@article{KYB_1989_25_1_a5,
     author = {Umesh, R. M.},
     title = {Conditions for a constrained system to have a set of impulse energy measures},
     journal = {Kybernetika},
     pages = {45--59},
     year = {1989},
     volume = {25},
     number = {1},
     mrnumber = {987857},
     zbl = {0666.93017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1989_25_1_a5/}
}
TY  - JOUR
AU  - Umesh, R. M.
TI  - Conditions for a constrained system to have a set of impulse energy measures
JO  - Kybernetika
PY  - 1989
SP  - 45
EP  - 59
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1989_25_1_a5/
LA  - en
ID  - KYB_1989_25_1_a5
ER  - 
%0 Journal Article
%A Umesh, R. M.
%T Conditions for a constrained system to have a set of impulse energy measures
%J Kybernetika
%D 1989
%P 45-59
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1989_25_1_a5/
%G en
%F KYB_1989_25_1_a5
Umesh, R. M. Conditions for a constrained system to have a set of impulse energy measures. Kybernetika, Tome 25 (1989) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/KYB_1989_25_1_a5/

[1] L. A. Zadeh, C. A. Desoer: Linear System Theory. McGraw-Hill, New York 1963. | Zbl

[2] V. F. Baklanov: Lowering the order of differential equations and transfer functions of control systems. Soviet Automatic Control 13 (1968), 1-7.

[3] M. F. Hutton: Routh Approximation Method for High Order Linear Systems. Singer, Little Falls, N. J. 1973.

[4] J. Lehoczky: The determination of simple quadratic integrals by Routh coefficients. Periodica Polytechnica Electrical Engineering 10 (1966), 2, 153-166.

[5] C. Bruni A. Isidori, A. Ruberti: A method of realization based on the moments of the impulse response matrix. IEEE Trans. Automat. Control AC-14 (1969), 203-204.

[6] R. M. Umesh: Approximate Model Matching. Unpublished Doctoral Thesis, Anna University, Madras, India 1984.

[7] F. R. Gantmacher: Theory of Matrices, Volume 1, 2. Chelsea, New York 1959. | MR