Quasi-Newton gradient method with analytical determination of the direction and length of step
Kybernetika, Tome 24 (1988) no. 5, pp. 378-393
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1988_24_5_a5,
author = {Hudzovi\v{c}, Peter},
title = {Quasi-Newton gradient method with analytical determination of the direction and length of step},
journal = {Kybernetika},
pages = {378--393},
year = {1988},
volume = {24},
number = {5},
mrnumber = {970215},
zbl = {0662.65053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1988_24_5_a5/}
}
Hudzovič, Peter. Quasi-Newton gradient method with analytical determination of the direction and length of step. Kybernetika, Tome 24 (1988) no. 5, pp. 378-393. http://geodesic.mathdoc.fr/item/KYB_1988_24_5_a5/
[1] M. Aoki: Introduction to Optimization Techniques -- Fundamentals and Applications of Nonlinear Programming. Macmillan, New York 1971. Russian translation: Nauka, Moscow 1977. | Zbl
[2] P. E. Gill W. Murray, M. H. Wright: Practical Optimization. Academic Press, New York 1981. Russian translation: Mir, Moscow 1985. | MR
[3] M. Maňas: Optimization Methods. SNTL, Praha 1979. In Czech.
[4] B. T. Polyak: Vvedenie v optimizaciju. Nauka, Moscow 1983. | MR
[5] G. V. Reklaitis A. Ravindran, K. M. Ragsdell: Engineering Optimization -- Methods and Applications. J. Wiley and Sons, New York 1983. Russian translation: Mir, Moscow 1986. | MR
[6] A. G. Sukharev A. V. Timokhov, V. V. Fedorov: Kurs metodov optimizacii. Nauka, Moscow 1986. | MR