@article{KYB_1988_24_4_a0,
author = {Sahoo, Prasanna K. and Wong, A. K. C.},
title = {Generalized {Jensen} difference based on entropy functions},
journal = {Kybernetika},
pages = {241--250},
year = {1988},
volume = {24},
number = {4},
mrnumber = {961558},
zbl = {0667.62003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1988_24_4_a0/}
}
Sahoo, Prasanna K.; Wong, A. K. C. Generalized Jensen difference based on entropy functions. Kybernetika, Tome 24 (1988) no. 4, pp. 241-250. http://geodesic.mathdoc.fr/item/KYB_1988_24_4_a0/
[1] S. Arimoto: Information theoretic considerations of estimations problems. Inform. and Control 19 (1971), 181-194. | MR
[2] M. Behara, J. S. Chawla: Generalized $\gamma$-entropy. Entropy and ergodic theory, pp. 15-38. Selecta Statistica Canadiana, Vol. 2, Univ. Press Canada, Toronto, Ontario 1975. | MR | Zbl
[3] M. Ben-Bassat: $f$-Entropies, probability of error, and feature selection. Inform. and Control 39 (1978), 227-242. | MR | Zbl
[4] J. Burbea, C. R. Rao: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory IT-28 (1982), 489-495. | MR | Zbl
[5] J. Burbea, C. R. Rao: On the convexity of higher order Jensen differences based on entropy functions. IEEE Trans. Inform. Theory IT-28 (1982), 961-963. | MR | Zbl
[6] R. Chakraborty: A note on Nei's measure of gene diversity in a substructured population. Humangenetik 21 (1974), 85-88.
[7] Z. Daróczy: Generalized information functions. Inform. and Control 16 (1970), 36-51. | MR
[8] A. El-Sayed: A generalized entropy form of the Fano inequality. Utilitas Math. 12 (1977), 289-298. | MR | Zbl
[9] R. G. Gallager: Information Theory and Reliable Communication. Wiley, New York 1968. | Zbl
[10] J. Havrda, F. Charvát: Quantification method of classification process, concept of structural $\alpha$-entropy. Kybernetika 3 (1967), 30-35. | MR
[11] N. Jardine, R. Sibson: Mathematical Taxonomy. Wiley, New York 1971. | MR | Zbl
[12] L. Kanal: Patterns in pattern recognition: 1968--1974. IEEE Trans. Inform. Theory IT-20 (1974), 697-722. | MR | Zbl
[13] R. C. Lewotin: The apportionment of human diversity. Evolutionary Biology 6 (1972), 381-398.
[14] T. K. Nayak: On diversity measures based on entropy functions. Comm. Statist. A 14 (1985), 203-215. | MR | Zbl
[15] T. K. Nayak: Sampling distributions in analysis of diversity. Sankhya Ser. B 48 (1986), 1-9. | MR | Zbl
[16] M. Nei: Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70 (1973), 3321-3323. | Zbl
[17] C. R. Rao: Diversity and dissimilarity coefficients: A unified approach. J. Theor. Pop. Biol. 27 (1982), 24-43. | MR | Zbl
[18] C. R. Rao: Convexity properties of entropy function and analysis of diversity. In: Inequalities in Statistics and Probability (Y. L. Tong, ed.). IMS Lecture Notes, 1984, Vol. 5, pp. 68-77. | MR
[19] A. Rényi: On measures of entropy and information. In: Proc. Fourth Berkeley Symp. 1960, Vol. 1, Univ. of California Press, Berkeley--Los Angeles 1961, pp. 547-561. | MR
[20] P. K. Sahoo: On the monotonicity of generalized gamma entropy. Submitted to Bull. Inst. Math. Acad. Sinica (1985).
[21] P. K. Sahoo: On a generalization of Shannon's random cipher result. Kybernetika 22 (1986), 385-392. | MR | Zbl
[22] C. E. Shannon: Mathematical theory of communication. Bell Systems Tech. J. 27 (1948), 379-423. | MR | Zbl
[23] R. Sibson: Information radius. Z. Wahrsch. Verw. Gebiete 14 (1969), 149-160. | MR | Zbl
[24] I. Vajda: Bounds of the minimal error probability on checking a finite or countable number of hypotheses. Problems Inform. Transmissions 4 (1968), 6-14. | MR
[25] A. K. C. Wong, M. L. You: Distance and entropy measure of random graph with application to structural pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7 (1985), 599-609.