Approximation of a random solution in extremum problems
Kybernetika, Tome 23 (1987) no. 6, pp. 483-488 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 90C15
@article{KYB_1987_23_6_a4,
     author = {Tamm, Ebu},
     title = {Approximation of a random solution in extremum problems},
     journal = {Kybernetika},
     pages = {483--488},
     year = {1987},
     volume = {23},
     number = {6},
     mrnumber = {922624},
     zbl = {0638.90077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_6_a4/}
}
TY  - JOUR
AU  - Tamm, Ebu
TI  - Approximation of a random solution in extremum problems
JO  - Kybernetika
PY  - 1987
SP  - 483
EP  - 488
VL  - 23
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_6_a4/
LA  - en
ID  - KYB_1987_23_6_a4
ER  - 
%0 Journal Article
%A Tamm, Ebu
%T Approximation of a random solution in extremum problems
%J Kybernetika
%D 1987
%P 483-488
%V 23
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_6_a4/
%G en
%F KYB_1987_23_6_a4
Tamm, Ebu. Approximation of a random solution in extremum problems. Kybernetika, Tome 23 (1987) no. 6, pp. 483-488. http://geodesic.mathdoc.fr/item/KYB_1987_23_6_a4/

[1] H. W. Engl: Existence of measurable optima in stochastic nonlinear programming and control. Appl. Math. Optim. 5 (1979), 271-281. | MR | Zbl

[2] V. Kaňková: Sequences of stochastic programming problems with incomplete information. In: Trans. Ninth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1983, pp. 327-332. | MR

[3] E. Tamrn: Inequalities for the solutions of nonlinear programming problems depending on a random parameter. Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 3, 487-497. | MR

[4] Э. Тамм: Неравенства тупа Чебымева для решений Е-моделей нелинийного стохастического программировануя. ENSV TA Тоimetised. Füüsika. Matemaatika 27 (1978), 4, 448-450. | MR | Zbl