On a coding theorem connected with ‘useful’ entropy of order $\alpha$ and type $\beta$
Kybernetika, Tome 23 (1987) no. 5, pp. 420-427 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 94A15, 94A17, 94A24, 94A29
@article{KYB_1987_23_5_a7,
     author = {Jain, Priti and Tuteja, R. K.},
     title = {On a coding theorem connected with {\textquoteleft}useful{\textquoteright} entropy of order $\alpha$ and type $\beta$},
     journal = {Kybernetika},
     pages = {420--427},
     year = {1987},
     volume = {23},
     number = {5},
     mrnumber = {915693},
     zbl = {0637.94005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a7/}
}
TY  - JOUR
AU  - Jain, Priti
AU  - Tuteja, R. K.
TI  - On a coding theorem connected with ‘useful’ entropy of order $\alpha$ and type $\beta$
JO  - Kybernetika
PY  - 1987
SP  - 420
EP  - 427
VL  - 23
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a7/
LA  - en
ID  - KYB_1987_23_5_a7
ER  - 
%0 Journal Article
%A Jain, Priti
%A Tuteja, R. K.
%T On a coding theorem connected with ‘useful’ entropy of order $\alpha$ and type $\beta$
%J Kybernetika
%D 1987
%P 420-427
%V 23
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a7/
%G en
%F KYB_1987_23_5_a7
Jain, Priti; Tuteja, R. K. On a coding theorem connected with ‘useful’ entropy of order $\alpha$ and type $\beta$. Kybernetika, Tome 23 (1987) no. 5, pp. 420-427. http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a7/

[1] M. Belis, S. Guiasu: A quantitative-qualitative measure of information in cybernetic systems. IEEE Trans. Inform. Theory 14 (1968), 593-594.

[2] S. Guiasu, C. F. Picard: Borne inferieure de la longueur utile de certains codes. C.R. Acad. Sci. Paris 273 (1971), 248-251. | MR | Zbl

[3] G. Longo: A noiseless coding theorem for source having utilities. SIAM J. Appl. Math. 30 (1971), 4, 739-748. | MR

[4] C. F. Picard: Weighted probabilistic information measures. J. Combin. Inform. System Sci. 4(1979), 4, 343-356. | MR | Zbl