The mutual information. Estimation in the sampling without replacement
Kybernetika, Tome 23 (1987) no. 5, pp. 407-419 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62B10, 62D05, 94A17
@article{KYB_1987_23_5_a6,
     author = {Gil, Maria Angeles and Perez, Rigoberto and Gil, Pedro},
     title = {The mutual information. {Estimation} in the sampling without replacement},
     journal = {Kybernetika},
     pages = {407--419},
     year = {1987},
     volume = {23},
     number = {5},
     mrnumber = {915692},
     zbl = {0633.62010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a6/}
}
TY  - JOUR
AU  - Gil, Maria Angeles
AU  - Perez, Rigoberto
AU  - Gil, Pedro
TI  - The mutual information. Estimation in the sampling without replacement
JO  - Kybernetika
PY  - 1987
SP  - 407
EP  - 419
VL  - 23
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a6/
LA  - en
ID  - KYB_1987_23_5_a6
ER  - 
%0 Journal Article
%A Gil, Maria Angeles
%A Perez, Rigoberto
%A Gil, Pedro
%T The mutual information. Estimation in the sampling without replacement
%J Kybernetika
%D 1987
%P 407-419
%V 23
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a6/
%G en
%F KYB_1987_23_5_a6
Gil, Maria Angeles; Perez, Rigoberto; Gil, Pedro. The mutual information. Estimation in the sampling without replacement. Kybernetika, Tome 23 (1987) no. 5, pp. 407-419. http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a6/

[1] J. Aczel, Z. Daroczy: On Measures of Information and Their Characterizations. Academic Press, New York 1975. | MR | Zbl

[2] J. Aczel, PI. Kannapan: A mixed theory of information, III, inset entropies of degree $\beta$. Inform, and Control 39 (1978), 315-322. | MR

[3] N. L. Aggarwal Y. Cesari, C. F. Picard: Proprietes de branchement liées aux questionnaires de Campbell et á l'information de Renyi C. R. Acad. Sci. Paris Sér. A 275 (1972), 437-440. | MR

[4] F. Azorin: Curso de Muestreo y Aplicaciones. Ed. Aguilar, Madrid 1972.

[5] F. Azorin: Diversity and uncertainty. Proc FISAL-83, Palma de Mallorca 1983, pp. 37-44.

[6] T. N. Bhargava, V. R. R. Uppuluri: On an axiomatic derivation of Gini diversity with applications. Metron XXXlll (1975), No. 1-2,1-13. | MR

[7] T. N. Bhargava, V. R. R. Uppuluri: Sampling distribution of Gini's index of diversity. Appl. Math. Comput. 3, (1977), 1-24. | MR | Zbl

[8] F. Bourguignon: Decomposable income inequality measures. Econometrica 47 (1979), 901-920. | MR | Zbl

[9] W. G. Cochran: Sampling Techniques. John Wiley, New York 1967.

[10] F. A. Cowell: On the structure of additive inequality measures Rev. Econom. Stud. 47 (1980), 521-531.

[11] Ph. Daget, M. Godron: Analyse Fréquentielle de l'écologie. Masson, Paris 1982.

[12] Ph. Daget M. Godron, J. L. Guillerm: Profils écologiques et information mutuelle entre especes et factuers écologiques, Grundfragen iun Methoden in the Pflanzensoziologie. Verlag Dr. W. Junk N. V., Den Haag 1972, pp. 121-149.

[13] Z. Daroczy: Generalized information functions. Inform, and Control 16 (1970) 36-51. | MR | Zbl

[14] W. Eichhorn, W. Gehrig: Measurement of inequality in economics. In: Modern Applied Mathematics Optimization and Operations Research (B. Korte ed.), North Holland, Amsterdam 1982. | Zbl

[15] H. Emptoz: Informations Utiles et Pseudoquestionnaires. Thése, Universite ClaudeBernard, Lyon 1976.

[16] M. A. Gil: Estudio de una medida para la Incertidumbre correspondiente a las Utilidades. Trabajos Estadist. Investigation Oper. 32 (1981), 3, 45-66. | MR

[17] M. A. Gil: Criterion of maximizing the expected quietness (invariant by homotheties in relation to the utilities). R. A. I. R. O. - Rech. Opér. 16 (1982), 319-331. | MR

[18] M. A. Gil: Mixed criterion of expected utility and quietness (invariant by homotheties with respect to the utilities). Statistica XLll (1982), 1, 21-37. | MR

[19] M. A. Gil R. : Perez and I. Martinez: The mutual information. Estimation in the sampling with replacement. R. A. I. R. O. - Rech. Opér. 20 (1986), 3, 257-268. | MR

[20] P. Gil: Teoria Matematica de la Información. Ed. ICE, Madrid 1981.

[21] J. Havrda, F. Charvát: Quantification method of classification processes. Kybernetika 3 (1967), 30-35. | MR

[22] M. Kendall, A. Stuart: The Advanced Theory of Statistics. Charles Griffin Co. Ltd., London 1977-83. | Zbl

[23] Z. Lomnicki, S. Zaremba: The asymptotic distributions of estimators of the amount of transmitted information. Inform, and Control 2 (1959), 260-284. | MR | Zbl

[24] A. M. Mathai, P. N. Rathie: Basic Concepts in Information Theory and Statistics. Wiley Eastern Limited, New Delhi 1975. | MR | Zbl

[25] O. Onicescu: Energie informationnelle. C. R. Acad. Sci. Paris, Sér. A 263 (1966), 841-842. | MR | Zbl

[26] R. Pérez: Estimación de la Incertidumbre, la Incertidumbre util y la Inquietud en Poblaciones Finitas. Rev. Real Acad. Ciencias de Madrid LXX1X (1985), 4, 651-654.

[27] R. Pérez M. A. Gil, P. Gil: Estimating the uncertainty associated with a variable in a finite population. Kybernetes 15 (1986), 251-256. | MR

[28] R. Pérez C. Caso, M. A. Gil: Unbiased estimation of income inequality. Statist. Hefte 27 (1986), 227-237. | MR

[29] C. F. Picard: Graphes et Questionnaires, Tome 2. Gauthier-Villars, Paris 1972.

[30] E. C. Pielou: An Introduction to Mathematical Diversity. Wiley Interscience, New York 1969.

[31] P. R. Rathie, PI. Kannapan: An inaccuracy function of the type $\beta$. Ann. Inst. Statist. Math. 25 (1973), 205-214. | MR

[32] C. E. Shannon: A mathematical theory of communication Bell System Tech. J. 27 (1949), 379-423. | MR

[33] A. F. Shorrocks: The class of additively decomposable inequality measures. Econometrica 48 (1980), 613-625. | MR | Zbl

[34] E. H. Simpson: Measurement of diversity. Nature 163 (1949), 688. | Zbl

[35] H. Theil: Economics and Information Theory. North Holland, Amsterdam 1967.

[36] I. Vajda: Bounds of the minimal error probability of checking a finite or countable number of hypotheses. Problems Inform. Transmission 4 (1968), 1, 9-19. | MR

[37] I. Vajda: A contribution to the informational Analysis of Pattern. Methodologies of Pattern Recognition, Academic Press, New York 1969, pp. 509-519.

[38] D. Zagier: On the decomposability of the Gini coefficient and other indices of inequality. Discussion Paper No. 108, Projectgruppe Theoretische Modelle, Universitat Bonn, 1983.

[39] J. Zvárová: On asymptotic behaviour of sample estimator of Renyi's information of order a. In: Trans. Sixth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1971, pp. 919-924. | MR