@article{KYB_1987_23_5_a4,
author = {Jure\v{c}kov\'a, Jana and Sen, Pranab Kumar},
title = {An extension of {Billingsley's} uniform boundedness theorem to higher-dimensional $M$-processes},
journal = {Kybernetika},
pages = {382--387},
year = {1987},
volume = {23},
number = {5},
mrnumber = {915690},
zbl = {0633.60008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a4/}
}
TY - JOUR AU - Jurečková, Jana AU - Sen, Pranab Kumar TI - An extension of Billingsley's uniform boundedness theorem to higher-dimensional $M$-processes JO - Kybernetika PY - 1987 SP - 382 EP - 387 VL - 23 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a4/ LA - en ID - KYB_1987_23_5_a4 ER -
Jurečková, Jana; Sen, Pranab Kumar. An extension of Billingsley's uniform boundedness theorem to higher-dimensional $M$-processes. Kybernetika, Tome 23 (1987) no. 5, pp. 382-387. http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a4/
[1] P. Bickel, M. J. Wichura: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971), 1656-1670. | MR | Zbl
[2] P. Billingsley: Convergence of Probability Measures. J. Wiley, New York 1968. | MR | Zbl
[3] J. Jurečková, P. K. Sen: Invariance principles for some stochastic processes related to M-estimators and their role in sequential statistical inference. Sankhya, Ser. A 43 (1981), 190-210. | MR
[4] J. Jurečková, P. K. Sen: Sequential procedures based on M-estimators with discontinuous score functions. J. Statist. Plan Infer. 5 (1981), 253-266. | MR
[5] J. Jurečková, P. K. Sen: On adaptive scale-equivariant M-estimators in linear models. Statist. \& Dec, Suppl. Issue No. 1 (1984), 31 - 46. | MR
[6] J. Jurečková, P. K. Sen: A second order asymptotic distributional representation of M-estimators with discontinuous score functions. Ann. Probab. 15 (1987), 814-823. | MR
[7] A. H. Welsh: Bahadur representations for robust scale estimators based on regression residuals. Ann. Statist. 14 (1986), 1246-1251. | MR | Zbl