@article{KYB_1987_23_5_a0,
author = {\v{S}ebek, Michael},
title = {Characteristic polynomial assignment for delay-differential systems via {2-D} polynomial equations},
journal = {Kybernetika},
pages = {345--359},
year = {1987},
volume = {23},
number = {5},
mrnumber = {915686},
zbl = {0629.93033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a0/}
}
Šebek, Michael. Characteristic polynomial assignment for delay-differential systems via 2-D polynomial equations. Kybernetika, Tome 23 (1987) no. 5, pp. 345-359. http://geodesic.mathdoc.fr/item/KYB_1987_23_5_a0/
[1] R. Bellman, K. L. Cooke: Differential-Difference Equations. Academic Press, New York 1963. | MR | Zbl
[2] C. I. Byrnes M. W. Spong, T. J. Tarn: A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. Math. Systems Theory (to appear). | MR
[3] J. N. Chiasson: Control and Regulation of Generalized Systems. Ph. D. Thesis, University of Minnesota 1984.
[4] J. N. Chiasson, E. B. Lee: Coefficient assignment by dynamic compensation for single input single output retarded delay systems. 1984 CDC, Las Vegas.
[5] J. N. Chiasson, E. B. Lee: Coefficient assignment for SISO neutral delay systems. 3rd Int. Conf. Syst. Eng., Wright State Univ., Sept. 1984.
[6] E. Emre: The polynomial equation $QQ_{c} + RP_{c} = \Phi$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 611-620. | MR
[7] E. Emre: Regulation of linear systems over rings by dynamic output feedback. Syst. Control Lett. 3 (1983), 57-62. | MR | Zbl
[8] E. Emre, G. J. Knowles: Control of linear systems with fixed point delays. IEEE Trans. Automat. Control AC-29 (1984), 1083-1090. | MR
[9] E. Emre, P. Khargonekar: Regulation of split linear systems over rings: coefficients-assignment and observers. IEEE Trans. Automat. Control AC-27 (1982), 1, 104-113. | MR
[10] J. Ježek: New algorithm for minimal solution of linear polynomial equations. Kybernetika 18 (1982), 6, 505-515. | MR
[11] E. W. Kamen: On an algebraic theory of systems defined by convolution operators. Math. Systems Theory 9 (1975), 57-74. | MR | Zbl
[12] V. Kučera: Discrete Linear Control: The Polynomials Equation Approach. John Wiley, Chichester 1979. | MR
[13] V. Kučera: Design of internally proper and stable control systems. IFAC Congress 1984, Budapest.
[14] E. B. Lee, A. Olbrot: On reachability over polynomial rings and related genericity problem. Internat. J. Systems Sci. 13 (1982), 109-113. | MR
[15] A. Z. Manitius, A. Olbrot: Finite spectrum assignment for systems with delays. IEEE Trans. Automat. Control AC-24 (1979), 541-553. | MR
[16] A. S. Morse: Ring models for delay-differential systems. Automatica 12 (1976), 529-531. | MR | Zbl
[17] D. A. O'Connor, T. J. Tarn: On stabilizabilization by state feedback for neutral differential difference equations. IEEE Trans. Automat. Control AC-28 (1983), 615-618. | MR
[18] P. N. Paraskevopoulos, O. I. Kosmidou: Eigenvalue assignment of two-dimensional systems using PID controllers. Internat. J. Systems Sci. 12 (1981), 4, 407-422. | MR | Zbl
[19] M. Spong: On feedback equivalence of retarded and neutral delay-differential equations. 1983 Allerton Conference. | MR
[20] M. Šebek: 2-D polynomial equations. Kybernetika 19 (1983), 3, 212-224. | MR
[21] M. Šebek: On 2-D pole placement. IEEE Trans. Automat. Control AC-30 (1985), 819-822. | MR
[22] B. L. van der Waerden: Modern Algebra. 4th edition. Fred. Ungar, New York 1964.
[23] K. Watanabe M. Ito M. Kaneko, T. Ouchi: Finite spectrum assignment problem for systems with delay in state variable. IEEE Trans. Automat. Control AC-27 (1983), 913-926. | MR