The $L^2$-optimal convolving functions in reconstruction convolution algorithms
Kybernetika, Tome 23 (1987) no. 4, pp. 294-304 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 44A15, 45H05, 45L10, 65R10, 65R20, 92A07
@article{KYB_1987_23_4_a2,
     author = {Mat\'u\v{s}, Franti\v{s}ek},
     title = {The $L^2$-optimal convolving functions in reconstruction convolution algorithms},
     journal = {Kybernetika},
     pages = {294--304},
     year = {1987},
     volume = {23},
     number = {4},
     mrnumber = {912014},
     zbl = {0638.65093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_4_a2/}
}
TY  - JOUR
AU  - Matúš, František
TI  - The $L^2$-optimal convolving functions in reconstruction convolution algorithms
JO  - Kybernetika
PY  - 1987
SP  - 294
EP  - 304
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_4_a2/
LA  - en
ID  - KYB_1987_23_4_a2
ER  - 
%0 Journal Article
%A Matúš, František
%T The $L^2$-optimal convolving functions in reconstruction convolution algorithms
%J Kybernetika
%D 1987
%P 294-304
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_4_a2/
%G en
%F KYB_1987_23_4_a2
Matúš, František. The $L^2$-optimal convolving functions in reconstruction convolution algorithms. Kybernetika, Tome 23 (1987) no. 4, pp. 294-304. http://geodesic.mathdoc.fr/item/KYB_1987_23_4_a2/

[1] И. М. Гельфаид М. И. Грасв Н. Я. Виленкин: Интегральная геометрия и связаные с ней вопросы теории представленуй. Физматгиз, Москва 1962. | Zbl

[2] G. T. Herman, ed.: Image Reconstruction from Projection: Implementation and Applications. Springer-Verlag, Berlin 1979.

[3] K. Rektorys: Variational Methods in Mathematics, Science and Engineering (in Czech). Second Edition. SNTL, Prague 1977. | MR

[4] D. H. Griffel: Applied Functional Analysis. Ellis Horwood Limited, New York 1981. | MR | Zbl

[5] A. E. Taylor: Introduction to Functional Analysis (in Czech). Academia, Prague 1973.