A unified approach to multivariable discrete-time filtering based on the Wiener theory
Kybernetika, Tome 23 (1987) no. 3, pp. 177-197 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62M15, 62M20, 93C35, 93C55, 93E10, 93E11, 93E14
@article{KYB_1987_23_3_a0,
     author = {Barrett, John F. and Moir, Thomas J.},
     title = {A unified approach to multivariable discrete-time filtering based on the {Wiener} theory},
     journal = {Kybernetika},
     pages = {177--197},
     year = {1987},
     volume = {23},
     number = {3},
     mrnumber = {900329},
     zbl = {0627.93067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_3_a0/}
}
TY  - JOUR
AU  - Barrett, John F.
AU  - Moir, Thomas J.
TI  - A unified approach to multivariable discrete-time filtering based on the Wiener theory
JO  - Kybernetika
PY  - 1987
SP  - 177
EP  - 197
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_3_a0/
LA  - en
ID  - KYB_1987_23_3_a0
ER  - 
%0 Journal Article
%A Barrett, John F.
%A Moir, Thomas J.
%T A unified approach to multivariable discrete-time filtering based on the Wiener theory
%J Kybernetika
%D 1987
%P 177-197
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_3_a0/
%G en
%F KYB_1987_23_3_a0
Barrett, John F.; Moir, Thomas J. A unified approach to multivariable discrete-time filtering based on the Wiener theory. Kybernetika, Tome 23 (1987) no. 3, pp. 177-197. http://geodesic.mathdoc.fr/item/KYB_1987_23_3_a0/

[1] U. Shaked: A transfer function approach to linear discrete stationary filtering and the steadystate discrete optimal control problem. Internat. J. Control 29 (1979), 2, 279-291. | MR

[2] P. Hagander, B. Wittenmark: A self-tuning filter for fixed-lag smoothing. IEEE Trans. Inform. Theory 23 (1977), 3, 377-384. | Zbl

[3] T. J. Moir: Design of Discrete time Controllers and Estimators. CNAA Ph. D. Thesis, Sheffield Polytechnic Dept. of Electr. Engrg., Feb. 1983.

[4] T. J. Moir, M. J. Grimble: Optimal self-tuning filtering, smoothing and predication for discrete multivariable processes. IEEE Trans. Automat. Control 19 (1984), 2, 128-137.

[5] J. F. Barrett: Construction of Wiener Filters using the return difference matrix. Internat. J. Control 26 (1977), 5, 797-803. | MR | Zbl

[6] V. Kučera: Transfer function solution of the Kalman-Bucy filter problem. Kybernetika 14 (1978), 2, 110-122. | MR

17] Z. L. Deng: Multivariable self-tuning filter and smoother. 6th IFAC symp. identif. & syst. param. estim., Arlington 1982.

[8] Z. L. Deng: White-noise filter and smoother with application to seismic data deconvolution. 7th IFAC symp. identif. & syst. param. estim., York 1985.

[9] Yu. A. Rozanov: Stationary Random Processes. Gos. Izdat. Fiz.-Mat. Lit. Moscow, 1963. English transl. published by Holden-Day, San Francisco 1967. | MR

[10] H. Wold: A Study in the Analysis of Stationary Time Series. Almqvist \& Wiksell, Uppsala 1953. | MR

[11] A. N. Kolmogorov: Stationary sequences in Hilbert space. Bull. Moscow State Univ. 2 (1941), 6, 1-40, English transl. in T. Kailath (ed.) Linear Least Squares Estimation. Dowden, Hutchinson \& Ross, Stroudsburg, Pennsylvania 1977.

[12] P. Whittle: Prediction and Regulation by Least Squares. English Universities Press, London 1963. | MR

[13] W. R. E. Wouters, M. Gevers: An innovations approach to the discrete-time linear least squares estimation problem. Journal ,,A'', 19 (1978), 1, 8-20. | Zbl

[14] Chi-Tsong Chen: On the digital Wiener filter. Proc. IEEE 64 (1976), 1736-1737.

[15] P. E. W. Grensted: A lecture course on linear sampled data systems (unpublished). Cambridge University, Department of Engineering, 1969.

[16] D. H. Mee: Factorization-result for optimal discrete-time systems. Electron. Lett. 6 (1970), 233-234.

[17] C. C. Arcasoy: Return-difference matrix properties for optimal stationary Kalman filtering. Proc. IEE 118 (1971), 2, 1831-1834. | MR

[18] B. D. O. Anderson, J. B. Moore: Optimal Filtering. Prentice-Hall, New Jersey 1979. | Zbl

[19] J. B. Moore: Discrete-time fixed-lag smoothing algorithms. Automatica 9 (1973), 163- 173. | Zbl

[20] V. Kučera: New results in state estimation. Automatica 17 (1981), 5, 745-748. | MR

[21] J. F. Barrett: Solution of the stationary filtering problem in the frequency domain. IEE Colloquium: Frequency domain aspects of filtering theory, London 1982.

[22] J. F. Barrett: Problems Arising in the Analysis of Randomly Disturbed Automatic Control Systems. Ph. D. Thesis, Cambridge University, Dec. 1958.