Estimating interactions in binary lattice data with nearest-neighbor property
Kybernetika, Tome 23 (1987) no. 2, pp. 136-142 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60K35, 62M05, 62M99, 80A10, 82B30
@article{KYB_1987_23_2_a3,
     author = {Jan\v{z}ura, Martin},
     title = {Estimating interactions in binary lattice data with nearest-neighbor property},
     journal = {Kybernetika},
     pages = {136--142},
     year = {1987},
     volume = {23},
     number = {2},
     mrnumber = {886826},
     zbl = {0668.62059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a3/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - Estimating interactions in binary lattice data with nearest-neighbor property
JO  - Kybernetika
PY  - 1987
SP  - 136
EP  - 142
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a3/
LA  - en
ID  - KYB_1987_23_2_a3
ER  - 
%0 Journal Article
%A Janžura, Martin
%T Estimating interactions in binary lattice data with nearest-neighbor property
%J Kybernetika
%D 1987
%P 136-142
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a3/
%G en
%F KYB_1987_23_2_a3
Janžura, Martin. Estimating interactions in binary lattice data with nearest-neighbor property. Kybernetika, Tome 23 (1987) no. 2, pp. 136-142. http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a3/

[1] J. E. Besag: On the statistical analysis of nearest-neighbor systems. Proceedings 9. European meeting of statisticians, Budapest 1972.

[2] N. Dunford, J. T. Schwartz: Linear Operators, I. Interscience, New York 1958. | Zbl

[3] M. Janžura: Estimating interactions in binary data sequences. Kybernetika 22 (1986), 5, 377-384. | MR

[4] D. H. Mayer: The Ruelle-Araki Transfer Operator in Classical Mechanics. (Lecture Notes in Physics 123.) Springer-Verlag, Berlin-Heidelberg-New York 1980. | MR

[5] D. Ruelle: Thermodynamic Formalism. Addison Wesley, Reading, Mass. 1978. | MR | Zbl

[6] D. Simon: A remark on Dobrushin's uniqueness theorem. Comm. Math. Phys. 68 (1979), 183-185. | MR | Zbl

[7] D. J. Strauss: Analysing binary lattice data with the nearest-neighbor property. J. Appl. Probab. 72 (1975), 702-712. | MR | Zbl