@article{KYB_1987_23_2_a1,
author = {Liese, Friedrich},
title = {Hellinger integrals, contiguity and entire separation},
journal = {Kybernetika},
pages = {104--123},
year = {1987},
volume = {23},
number = {2},
mrnumber = {886824},
zbl = {0638.60001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a1/}
}
Liese, Friedrich. Hellinger integrals, contiguity and entire separation. Kybernetika, Tome 23 (1987) no. 2, pp. 104-123. http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a1/
[1] G. K. Eagleson: An extended dichotomy theorem for sequences of pairs of Gaussian measures. Ann. Probab. 9 (1981), 3, 453-459. | MR | Zbl
[2] G K. Eagleson, I. Memin: Sur la contiguite de deux suites de mesures: generalization d'un theoreme de Kabonov-Liptser-Shiryayev, Seminaire Probability XVI. Lecture. Notes 920, Springer-Verlag, Berlin-Heidelberg-New York 1982.
[3] J. Kerstan, F. Liese: Zur Existenz bedingter Verteilungsgesetze I. Math. Nachrichten 61 (1974), 279-310. | MR | Zbl
[4] F. Liese: Estimates of Hcliinger integrals of discrete time stochastic processes, Forschungserg. FSU Jena Nr. 84/51 and Proc. "Colloquium on Goodness of Fit" Debrecen 1984, 355-368. | MR
[5] F. Liese: Hellinger integrals, error probabilities and contiguity of Gaussian processes with independent increments and Poisson processes. Journal of Information Processing and Cybernetics-EIK 21 (1985), 297-312. | MR | Zbl
[6] R. Ch. Liptser F. Pukelsheim, A. N. Shiryayev: On necessary and sufficient conditions for contiguity and entire separation of probability measures. Uspeki Math. Nauk 37 (6) (1982), 97-124. | MR
[7] R. Ch. Liptser, A. N. Shiryayev: Statistics of Random Processes, Vol. I, II. Springer-Verlag, Berlin-Heidelberg-New York 1978.
[8] T. Nemetz: Equivalence orthogonality dichotomies of probability measures. Proc. Coll. on Limit Theorems of Prob. Theory and Stat. Keszthely 1974. | MR
[9] C. M. Newman: The inner product of path space measures corresponding to random processes with independent increments. Bull. Amer. Math. Soc. 78 (1972), 2. | MR | Zbl
[10] S. Orey: Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand, New York-Cincinnati-Toronto -Melbourne 1971. | MR | Zbl