Hellinger integrals, contiguity and entire separation
Kybernetika, Tome 23 (1987) no. 2, pp. 104-123 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60A10, 60E99, 60G30, 60G42, 62B99, 62F05, 62M02
@article{KYB_1987_23_2_a1,
     author = {Liese, Friedrich},
     title = {Hellinger integrals, contiguity and entire separation},
     journal = {Kybernetika},
     pages = {104--123},
     year = {1987},
     volume = {23},
     number = {2},
     mrnumber = {886824},
     zbl = {0638.60001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a1/}
}
TY  - JOUR
AU  - Liese, Friedrich
TI  - Hellinger integrals, contiguity and entire separation
JO  - Kybernetika
PY  - 1987
SP  - 104
EP  - 123
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a1/
LA  - en
ID  - KYB_1987_23_2_a1
ER  - 
%0 Journal Article
%A Liese, Friedrich
%T Hellinger integrals, contiguity and entire separation
%J Kybernetika
%D 1987
%P 104-123
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a1/
%G en
%F KYB_1987_23_2_a1
Liese, Friedrich. Hellinger integrals, contiguity and entire separation. Kybernetika, Tome 23 (1987) no. 2, pp. 104-123. http://geodesic.mathdoc.fr/item/KYB_1987_23_2_a1/

[1] G. K. Eagleson: An extended dichotomy theorem for sequences of pairs of Gaussian measures. Ann. Probab. 9 (1981), 3, 453-459. | MR | Zbl

[2] G K. Eagleson, I. Memin: Sur la contiguite de deux suites de mesures: generalization d'un theoreme de Kabonov-Liptser-Shiryayev, Seminaire Probability XVI. Lecture. Notes 920, Springer-Verlag, Berlin-Heidelberg-New York 1982.

[3] J. Kerstan, F. Liese: Zur Existenz bedingter Verteilungsgesetze I. Math. Nachrichten 61 (1974), 279-310. | MR | Zbl

[4] F. Liese: Estimates of Hcliinger integrals of discrete time stochastic processes, Forschungserg. FSU Jena Nr. 84/51 and Proc. "Colloquium on Goodness of Fit" Debrecen 1984, 355-368. | MR

[5] F. Liese: Hellinger integrals, error probabilities and contiguity of Gaussian processes with independent increments and Poisson processes. Journal of Information Processing and Cybernetics-EIK 21 (1985), 297-312. | MR | Zbl

[6] R. Ch. Liptser F. Pukelsheim, A. N. Shiryayev: On necessary and sufficient conditions for contiguity and entire separation of probability measures. Uspeki Math. Nauk 37 (6) (1982), 97-124. | MR

[7] R. Ch. Liptser, A. N. Shiryayev: Statistics of Random Processes, Vol. I, II. Springer-Verlag, Berlin-Heidelberg-New York 1978.

[8] T. Nemetz: Equivalence orthogonality dichotomies of probability measures. Proc. Coll. on Limit Theorems of Prob. Theory and Stat. Keszthely 1974. | MR

[9] C. M. Newman: The inner product of path space measures corresponding to random processes with independent increments. Bull. Amer. Math. Soc. 78 (1972), 2. | MR | Zbl

[10] S. Orey: Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand, New York-Cincinnati-Toronto -Melbourne 1971. | MR | Zbl