Independent and identically distributed pseudo-random samples
Kybernetika, Tome 23 (1987) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60A99, 60E05, 68Q30, 68U20
@article{KYB_1987_23_1_a0,
     author = {Kramosil, Ivan},
     title = {Independent and identically distributed pseudo-random samples},
     journal = {Kybernetika},
     pages = {1--12},
     year = {1987},
     volume = {23},
     number = {1},
     mrnumber = {883903},
     zbl = {0623.60006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1987_23_1_a0/}
}
TY  - JOUR
AU  - Kramosil, Ivan
TI  - Independent and identically distributed pseudo-random samples
JO  - Kybernetika
PY  - 1987
SP  - 1
EP  - 12
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1987_23_1_a0/
LA  - en
ID  - KYB_1987_23_1_a0
ER  - 
%0 Journal Article
%A Kramosil, Ivan
%T Independent and identically distributed pseudo-random samples
%J Kybernetika
%D 1987
%P 1-12
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1987_23_1_a0/
%G en
%F KYB_1987_23_1_a0
Kramosil, Ivan. Independent and identically distributed pseudo-random samples. Kybernetika, Tome 23 (1987) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/KYB_1987_23_1_a0/

[1] M. Davis: Computability and Unsolvability. McGraw-Hill New York 1958. | MR | Zbl

[2] T. L. Fine: Theories of Probability - An Examimation of Foundations. Academic Press New York - London 1973. | MR

[3] I. Kramosil: Monte-Carlo methods from the point of view of algorithmic complexity. In: Trans. 9th Prague Conf. on Inform. Theory. Statist. Dec. Functions and Random Processes, pp. 39-51. Academia, Prague 1983. | MR | Zbl

[4] I. Kramosil: Recursive classification of pseudo-random sequences. Kybernetika 20 (1984), supplement, pp. 1-34. | MR

[5] I. Kramosil, J. Šindelář: Infinite sequencesof high algorithmic complexity. Kybernetika 20 (1984), 6, 459-466. | MR

[6] P. Martin-Löf: The definition of random sequences. Inform. and Control 9 (1966), 602-619. | MR

[7] H. Rogers, Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York 1967. | MR | Zbl

[8] C.-P. Schnorr: Zufälligkeit und Wahrscheinlichkeit. (Lecture Notes in Mathematics 218.) Springer-Verlag, Berlin - Heidelberg - New York 1971. | MR | Zbl