Synthesis of optimal trajectory of industrial robots
Kybernetika, Tome 22 (1986) no. 5, pp. 409-424 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 70B15, 70Q05, 93B40, 93B50, 93C95
@article{KYB_1986_22_5_a4,
     author = {Val\'a\v{s}ek, Michael},
     title = {Synthesis of optimal trajectory of industrial robots},
     journal = {Kybernetika},
     pages = {409--424},
     year = {1986},
     volume = {22},
     number = {5},
     zbl = {0621.93042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_5_a4/}
}
TY  - JOUR
AU  - Valášek, Michael
TI  - Synthesis of optimal trajectory of industrial robots
JO  - Kybernetika
PY  - 1986
SP  - 409
EP  - 424
VL  - 22
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1986_22_5_a4/
LA  - en
ID  - KYB_1986_22_5_a4
ER  - 
%0 Journal Article
%A Valášek, Michael
%T Synthesis of optimal trajectory of industrial robots
%J Kybernetika
%D 1986
%P 409-424
%V 22
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1986_22_5_a4/
%G en
%F KYB_1986_22_5_a4
Valášek, Michael. Synthesis of optimal trajectory of industrial robots. Kybernetika, Tome 22 (1986) no. 5, pp. 409-424. http://geodesic.mathdoc.fr/item/KYB_1986_22_5_a4/

[ 1 ] J. M. Brady, al.: Robot Motion: Planning and Control. MIT Press, Cambridge, Mass. 1983.

[2] J. E. Bobrow, S. Dubowsky: On the optimal control of robotic manipulators with actuator constraints. In: Proc. of 1983 American Control Conference.

[3] N. Jubeh: Optimal Control of Industrial Robots by the Use of Pontryagin's Maximum Principle. Ph. D. Thesis. Czech Technical University of Prague, Prague 1982. In Czech.

[4] V. F. Krotov, V. I. Gurman: Methods and Problems of Optimal Control. Nauka, Moskva 1973. In Russian. | MR

[5] J. Y. S. Luh: An anatomy of industrial robots and their controls. IEEE Trans. Automat. Control 28 (1983), 2, 133-153.

[6] J. Y. S. Luh: Conventional controller design for industrial robots - a tutorial. IEEE Trans. Systems Man Cybernet. 13 (1983), 3, 298-316. | Zbl

[7] P. Neuman: Optimal Control of Nonlinear Dynamic Systems with Minimum Energy Consumption. Ph. D. Thesis. Czech Technical University of Prague, Prague 1979. In Czech.

[8] R. P. Paul: Robot Manipulators: Mathematics, Programming and Control. MIT Press, Cambridge, Mass. 1981.

[9] A. P. Sage, C. C. White III: Optimum Systems Control. Prentice Hall Inc., Englewood Cliffs, New Jersey 1977.

[10] M. Valášek: The change of dynamic properties of a system by the transformation of input variables. Acta Polytechnica 10, II, 4 (1982), Prague, 159-164. In Czech.

[11] M. Valášek: Energetically suboptimal and programme control of industrial robots in real time. Automatizace 26 (1983), 12, 296-300. In Czech.

[12] M. Valášek: Synthesis of Optimal Trajectory of an Industrial Robot. Ph. D. Thesis, Czech Technical University of Prague, Prague 1984. In Czech.

[13] M. Vukorbratovic, M. Kircanski: A method for optimal synthesis of manipulation robot trajectories. Trans. ASME Ser. G - J. Dynamic Systems Measurement Control 704 (1982), 2, 188-193.

[14] E. Polak: Computational Methods in Optimization: A Unified Approach. Academic Press, New York 1971. | MR