@article{KYB_1986_22_4_a4,
author = {Balachandran, K.},
title = {Controllability of nonlinear systems with delays in both state and control variables},
journal = {Kybernetika},
pages = {340--348},
year = {1986},
volume = {22},
number = {4},
mrnumber = {868026},
zbl = {0605.93009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_4_a4/}
}
Balachandran, K. Controllability of nonlinear systems with delays in both state and control variables. Kybernetika, Tome 22 (1986) no. 4, pp. 340-348. http://geodesic.mathdoc.fr/item/KYB_1986_22_4_a4/
[1] H. T. Banks: Representations for solutions of linear functional differential equations. J. Differential Equations 5 (1969), 2, 399-409. | MR | Zbl
[2] D. H. Chyung: Controllability of linear time-varying systems with delays. IEEE Trans. Automat. Control AC-16 (1971), 5, 493-495. | MR
[3] S. V. Curakova: The relative controllability of linear systems with variable and distributed retardation. Differencial'nye Uravnenija 5 (1969), 6, 1068- 1075. | MR
[4] D. H. Chyung, E. B. Lee: Delayed action control problems. Automatica 6 (1970), 3, 395-400. | MR | Zbl
[5] J. P. Dauer: Nonlinear perturbations of quasi-linear control systems. J. Math. Anal. Appl. 54 (1976), 3, 717-725. | MR | Zbl
[6] J. P. Dauer, R. D. Gahl: Controllability of nonlinear delay systems. J. Optim. Theory Appl. 21 (1977), 1, 59-70. | MR | Zbl
[7] J. Klamka: On the controllability of linear systems with delays in the control. Internat. J. Control 25 (1977), 6, 875-883. | MR | Zbl
[8] J. Klamka: Relative controllability of nonlinear systems with distributed delays in control. Internat. J. Control 28 (1978), 2, 307-312. | MR
[9] A. Manitius: On the controllability conditions for systems with distributed delays in state and control. Arch. Automat. Telemech. 17 (1972), 4, 363-377. | MR | Zbl
[10] A. Manitius, A. W. Olbrot: Controllability conditions for systems with delayed state and control. Arch. Automat. Telemech. 17 (1972), 2, 119-131. | MR
[11] D. Somasundaram, K. Balachandran: Controllability of nonlinear systems consisting of a bilinear mode with distributed delays in control. IEEE Trans. Automat. Control AC-29 (1984), 6, 573-575. | MR | Zbl
[12] K. Balachandran: Controllability of nonlinear perturbations of linear systems with distributed delays in control. Robotica 3 (1985), 2, 89-91.