A solution of the continuous Lyapunov equation by means of power series
Kybernetika, Tome 22 (1986) no. 3, pp. 209-217 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A24, 34D20, 39B20, 65F30, 65K10, 93C30, 93D05
@article{KYB_1986_22_3_a0,
     author = {Je\v{z}ek, Jan},
     title = {A solution of the continuous {Lyapunov} equation by means of power series},
     journal = {Kybernetika},
     pages = {209--217},
     year = {1986},
     volume = {22},
     number = {3},
     mrnumber = {852322},
     zbl = {0631.65073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_3_a0/}
}
TY  - JOUR
AU  - Ježek, Jan
TI  - A solution of the continuous Lyapunov equation by means of power series
JO  - Kybernetika
PY  - 1986
SP  - 209
EP  - 217
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1986_22_3_a0/
LA  - en
ID  - KYB_1986_22_3_a0
ER  - 
%0 Journal Article
%A Ježek, Jan
%T A solution of the continuous Lyapunov equation by means of power series
%J Kybernetika
%D 1986
%P 209-217
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1986_22_3_a0/
%G en
%F KYB_1986_22_3_a0
Ježek, Jan. A solution of the continuous Lyapunov equation by means of power series. Kybernetika, Tome 22 (1986) no. 3, pp. 209-217. http://geodesic.mathdoc.fr/item/KYB_1986_22_3_a0/

[1] F. R. Gantmacher: The Theory of Matrices. vol. 1. Chelsea, New York 1966. | MR

[2] P. Lancaster: Theory of Matrices. Academic Press, New York 1969. | MR | Zbl

[3] W. Givens: Elementary divisors and some properties of the Lyapunov mapping $X \rightarrow AX + XA^*$. Argonne National Laboratory, Argonne, Illinois 1961.

[4] P. Hagander: Numerical solution of $A^T S + SA + Q = 0$. Lund Institute of Technology, Division of Automatic Control, Lund, Sweden 1969. | MR

[5] V. Kučera: The matrix equation AX + XB = C. SIAM J. Appl. Math. 26 (1974), 1, 15-25. | MR

[6] M. C. Pease: Methods of Matrix Algebra. Academic Press, New York 1965. | MR | Zbl

[7] P. Lancaster: Explicit solution of the matrix equations. SIAM Rev. 12 (1970), 544-566. | MR

[8] J. Štěcha A. Kozáčiková, J. Kozáčik: Algorithm for solution of equations $PA + A^T P = -Q$ and $M^T PM - P= -Q$ resulting in Lyapunov stability analysis of linear systems. Kybernetika 9 (1973), 1, 62-71. | MR

[9] S. Barnett: Remarks on solution of AX + XB = C. Electron. Lett. 7 (1971), p. 385. | MR

[10] C. S. Lu: Solution of the matrix equation AX + XB = C. Electron. Lett. 7 (1971), 185-186. | MR

[11] C. S. Berger: A numerical solution of the matrix equation $P= \Phi P \Phi^T + S$. IEEE Trans. Automat. Control AC-16 (1971), 4, 381-382.

[12] A. Jameson: Solution of the equation AX + XB = C by inversion of an M x M or N X N matrix. SIAM J. Appl. Math. 16 (1968), 1020-1023. | MR

[13] M. Záruba: The Stationary Solution of the Riccati Equation. (in Czech). ÚTIA ČSAV Research Report 371, Prague 1973.

[14] E. C. Ma: A finite series solution of the matrix equation AX - XB = C. SIAM J. Appl. Math. 74 (1966), 490-495. | MR | Zbl

[15] E. J. Davison, F. T. Man: The numerical solution of $A'Q + QA = - C$. IEEE Trans. Automat. Control AC-13 (1968), 4, 448-449. | MR

[16] A. Trampus: A canonical basis for the matrix transormation $X \rightarrow AX+ XB$. J. Math. Anal. Appl. 14 (1966), 242-252. | MR

[17] J. Ježek: UTIAPACK - Subroutine Package for Problems of Control Theory. The User's Manual. ÚTIA ČSAV, Prague 1984.