A note on estimation in controlled diffusion processes
Kybernetika, Tome 22 (1986) no. 2, pp. 133-141 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60H10, 60J60, 62F10, 93E10, 93E11, 93E12, 93E20
@article{KYB_1986_22_2_a2,
     author = {L\'ansk\'a, V\v{e}ra},
     title = {A note on estimation in controlled diffusion processes},
     journal = {Kybernetika},
     pages = {133--141},
     year = {1986},
     volume = {22},
     number = {2},
     mrnumber = {849686},
     zbl = {0604.93054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a2/}
}
TY  - JOUR
AU  - Lánská, Věra
TI  - A note on estimation in controlled diffusion processes
JO  - Kybernetika
PY  - 1986
SP  - 133
EP  - 141
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a2/
LA  - en
ID  - KYB_1986_22_2_a2
ER  - 
%0 Journal Article
%A Lánská, Věra
%T A note on estimation in controlled diffusion processes
%J Kybernetika
%D 1986
%P 133-141
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a2/
%G en
%F KYB_1986_22_2_a2
Lánská, Věra. A note on estimation in controlled diffusion processes. Kybernetika, Tome 22 (1986) no. 2, pp. 133-141. http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a2/

[1] V. Dufková: On controlled one-dimensional diffusion processes with unknown parameter. Adv. in Appl. Probab. 9 (1977), 105-124. | MR

[2] J. Hájek: Local asymptotic minimax and admissibility in estimation. In: Proc. Sixth Berkeley Symp. Vol. I., University of California Press 1972, 175-194. | MR

[3] Yu. A. Kutoyants: Estimation of Parameters of Random Processes. (in Russian). Publ. Acad. Sci. Armen. SSR, Erevan 1980. | MR

[4] P. Mandl: Analytical Treatment of One-dimensional Markov Processes. Academia, Prague - Springer-Verlag, Berlin 1968. | MR | Zbl

[5] P. Mandl: Local asymptotic normality in controlled Markov chains. Presented at 16th EMS Marburg, 1984. | MR

[6] R. Morton: On the optimal control of stationary diffusion processes with inaccesible boundaries and no discounting. J. Appl. Probab. 8 (1971), 551 - 560. | MR