Long memory time series models
Kybernetika, Tome 22 (1986) no. 2, pp. 105-123 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60G10, 62M09, 62M10, 62M15
@article{KYB_1986_22_2_a0,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {Long memory time series models},
     journal = {Kybernetika},
     pages = {105--123},
     year = {1986},
     volume = {22},
     number = {2},
     mrnumber = {849684},
     zbl = {0607.62111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a0/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - Long memory time series models
JO  - Kybernetika
PY  - 1986
SP  - 105
EP  - 123
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a0/
LA  - en
ID  - KYB_1986_22_2_a0
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T Long memory time series models
%J Kybernetika
%D 1986
%P 105-123
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a0/
%G en
%F KYB_1986_22_2_a0
Anděl, Jiří. Long memory time series models. Kybernetika, Tome 22 (1986) no. 2, pp. 105-123. http://geodesic.mathdoc.fr/item/KYB_1986_22_2_a0/

[1] J. Anděl: Statistische Analyse von Zeitreihen. Akademie-Verlag, Berlin 1984. | MR

[2] J. Geweke, S. Porter-Hudak: The estimation and application of long memory time series models. J. Time Series Anal. 4 (1983), 221-238. | MR | Zbl

[3] I. C. Gradštejn, I. M. Ryžik: Tablicy integralov, summ, rjadov i proizvedenij. Izd. 4-oje, Gos. izd. fiz.-mat. literatury, Moskva 1962.

[4] C. W. J. Granger: Long memory relationships and the aggregation of dynamic models. J. Econometrics 14 (1980), 227-238. | MR | Zbl

[5] C. W. Granger, R. Joyeux: An introduction to long memory time series models and fractional differencing. J. Time Series Anal. 1 (1980), 15 - 29. | MR | Zbl

[6] M. K. Grebenča, S. I. Novoselov: Učebnice matematické analysy II. Translated from Russian. NČSAV, Praha 1955.

[7] E. J. Hannan: The estimation of spectral density after trend removal. J. Roy. Statist. Soc. Ser. B 20 (1958), 323-333. | MR

[8] J. R. M. Hosking: Fractional differencing. Biometrika 68 (1981), 165-176. | MR | Zbl

[9] J. R. M. Hosking: Some models of persistence in time series. In: Time Series Analysis, Theory and Practice 1, ed. O. D. Anderson (Proc. Int. Conf. Valencia, 1981), 642-653. North Holland, Amsterdam 1982.

[10] V. Jarník: Integrální počet II. (Integral Calculus II.) NČSAV, Praha 1956.

[11] A. Jonas: Long Memory Self Similar Series Models. (unpublished manuscript). Harvard University 1981.

[12] B. B. Mandelbrot: A fast fractional Gaussian noise generator. Water Resour. Res. 7 (1971), 543-553.

[13] B. B. Mandelbrot, J. W. van Ness: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10 (1968), 422-437. | MR

[14] B. B. Mandelbrot, J. R. Wallis: Computer experiments with fractional Gaussian noises. Water Resour. Res. 5 (1969), 228-267.

[15] A. I. McLeod, K. W. Hipel: Preservation of the rescaled adjusted range. 1. A reassessment of the Hurst phenomenon. Water Resour. Res. 14 (1978), 491 - 508.

[16] P. E. O'Connell: A simple stochastic modelling of Hurst's law. In: Mathematical Models of Hydrology. Symposium, Warsaw, Vol. 1 (1971), 169-187 (IAHS Publ. No. 100, 1974).

[17] P. E. O'Connell: Stochastic Modelling of Long-Term Persistence in Streamflow Sequences. Ph. D. Thesis, Civil Engineering Dept., Imperial College, London 1974.

[18] W. Rudin: Analýza v reálném a komplexním oboru. (Translated from English original Real and Complex Analysis.) Academia, Praha 1977. | MR | Zbl

[19] Z. Vízková: Spektrální analýza časových řad. (Spectral analysis of time series.) Ekonomicko-matematický obzor 6 (1970), 285-309.