@article{KYB_1986_22_1_a3,
author = {Vajda, Igor},
title = {Efficiency and robustness control via distorted maximum likelihood estimation},
journal = {Kybernetika},
pages = {47--67},
year = {1986},
volume = {22},
number = {1},
mrnumber = {839344},
zbl = {0603.62039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_1_a3/}
}
Vajda, Igor. Efficiency and robustness control via distorted maximum likelihood estimation. Kybernetika, Tome 22 (1986) no. 1, pp. 47-67. http://geodesic.mathdoc.fr/item/KYB_1986_22_1_a3/
[1] J. Anděl: Mathematical Statistics. (in Czech). SNTL - ALFA, Praha-Bratislava 1978.
[2] T. W. Anderson: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 (1955), 170- 176. | MR | Zbl
[3] R. A. Fisher: On the mathematical foundations of theoretical statistics. Reprinted in: Contributions to Mathematical Statistics (by R. A. Fisher). J. Wiley, New York 1950.
[4] W. Fuller: Introduction to the Statistical Time Series. J. Wiley, New York 1976. | MR
[5] F. R. Hampel: The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69 (1974), 383-393. | MR | Zbl
[6] P. I. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101. | MR | Zbl
[7] J. L. Kelley: General Topology. Van Nostrand, Princeton 1957. | MR
[8] L. Le Cam: On the asymptotic theory of estimation and testing hypotheses. In: Proc. 3rd Berkeley Symp. Math. Statist. Prob. Vol. 1 (1956), 129-156. | MR
[9] A. Perez: Notions generalisées d'incertitude, d'entropie et d'information du point de vue de la théorie des martingales. In: Trans. 1st Prague Conf. on Inform. Theory, etc. Publ. House Czechosl. Acad. Sci., Prague 1957.
[10] J. Pfanzagl: On the measurability and consistency of minimum contrast estimators. Metrika 14 (1969), 249-272.
[11] J. Pfanzagl: The second order optimaiity of tests and estimators for minimum contrast functional. Probab. and Math. Statist. 2 (1981), 55 - 70. | MR
[12] A. Rényi: Theory of probability. (in Czech). Academia, Prague 1972. | MR
[13] I. Vajda: Motivation, existence and equivariance of D-estimators. Kybernetika 20 (1984), 189-208. | MR | Zbl
[14] I. Vajda: Robust estimation in discrete and continuous families by means of a minimum chi-square method. Problems Control Inform. Theory 15 (1986), No. 2. | MR | Zbl