Conjugate direction algorithms for extended conic functions
Kybernetika, Tome 22 (1986) no. 1, pp. 31-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49A55, 49D07, 65K05, 90C30
@article{KYB_1986_22_1_a2,
     author = {Luk\v{s}an, Ladislav},
     title = {Conjugate direction algorithms for extended conic functions},
     journal = {Kybernetika},
     pages = {31--46},
     year = {1986},
     volume = {22},
     number = {1},
     mrnumber = {839343},
     zbl = {0597.65059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1986_22_1_a2/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
TI  - Conjugate direction algorithms for extended conic functions
JO  - Kybernetika
PY  - 1986
SP  - 31
EP  - 46
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1986_22_1_a2/
LA  - en
ID  - KYB_1986_22_1_a2
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%T Conjugate direction algorithms for extended conic functions
%J Kybernetika
%D 1986
%P 31-46
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1986_22_1_a2/
%G en
%F KYB_1986_22_1_a2
Lukšan, Ladislav. Conjugate direction algorithms for extended conic functions. Kybernetika, Tome 22 (1986) no. 1, pp. 31-46. http://geodesic.mathdoc.fr/item/KYB_1986_22_1_a2/

[1] J. Abaffy, F. Sloboda: Imperfect conjugate gradient algorithms for extended quadratic functions. Numer. Math. 42 (1983), 97-105. | MR | Zbl

[2] P. Bjorstad, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing 22 (1979), 93-100. | MR | Zbl

[3] C. G. Broyden: Quasi-Newton methods and their application to function minimization. Math. Comp. 21 (1967), 368-381. | MR

[4] W. C. Davidon: Variable Metric Method for Minimization. Report ANL-5990 Rev., Argonne National Laboratories, Argonne, IL, 1959.

[5] W. C. Davidon: Conic approximations and collinear scalings for optimizers. SIAM J. Numer. Anal. 17 (1980), 268-281. | MR | Zbl

[6] E. J. Davison, P. Wong: A robust algorithm that minimizes 1-functions. Automatica 11 (1975), 287-308. | MR

[7] L. C. W. Dixon: Conjugate directions without linear searches. Inst. Math. Appl. 11 (1973), 317-328. | MR | Zbl

[8] L. C. W. Dixon: Conjugate gradient algorithm: quadratic termination properties without line searches. Inst. Math. Appl. 15 (1975), 9-18. | MR

[9] J. Flachs: On the convergence, invariance, and related aspects of a modification of Huang's algorithm. Optim. Theory Appl. 37 (1982), 315-341. | MR | Zbl

[10] R. Fletcher, M. J. D. Powell. : A rapidly convergent descent method for minimization. Comput. J. 6 (1963), 163-168. | MR | Zbl

[11] R. Fletcher, C. M. Reeves: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149-154. | MR | Zbl

[12] D. Goldfarb: Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17 (1969), 739-763. | MR | Zbl

[13] M. R. Hestenes, E. Stiefel: The method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49 (1952), 409-436. | MR

[14] H. Y. Huang: Method of Dual Matrices for Function Minimization. Aero-Astronautic Report No. 88, Rice University, Houston, TX, 1972. | Zbl

[15] M. L. Lenard: Accelerated Conjugate Direction Methods for Unconstrained Optimization. Technical Report No. MRC-1591, University of Wisconsin, Madison, WI, 1976.

[16] L. Lukšan: Conjugate gradient algorithms for conic functions. Aplikace matemat. (to appear). | MR

[17] L. Lukšan: Variable metric methods for a class of extended conic functions. Kybernetika 21 (1985), 96-107. | MR

[18] L. Nazareth: A conjugate direction algorithm without line searches. J. Optim. Theory Appl. 23 (1977), 373-387. | MR | Zbl

[19] J. E. Shirey: Minimization of extended quadratic functions. Numer. Math. 39 (1982), 157-161. | MR | Zbl

[20] F. Sloboda: An imperfect conjugate gradient algorithm. Aplikace matematiky 27 (1982), 426-434. | MR | Zbl

[21] F. Sloboda: A generalized conjugate gradient algorithm for minimization. Numer. Math. 35 (1980), 223-230. | MR | Zbl

[22] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM J. Numer. Anal. 17 (1980), 84-114. | MR | Zbl

[23] E. Spedicato: A variable-metric method for function minimization derived from invariancy to nonlinear scaling. J. Optim. Theory Appl. 20 (1976), 315-329. | MR | Zbl

[24] G. Zoutendijk: Methods of Feasible Directions. Elsevier, Amsterdam 1960. | Zbl