A convergent algorithm for solving linear programs with an additional reverse convex constraint
Kybernetika, Tome 21 (1985) no. 6, pp. 428-435 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49D35, 49M37, 65K05, 90C05, 90C30
@article{KYB_1985_21_6_a1,
     author = {Muu, L\^e Dung},
     title = {A convergent algorithm for solving linear programs with an additional reverse convex constraint},
     journal = {Kybernetika},
     pages = {428--435},
     year = {1985},
     volume = {21},
     number = {6},
     mrnumber = {831101},
     zbl = {0596.90081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a1/}
}
TY  - JOUR
AU  - Muu, Lê Dung
TI  - A convergent algorithm for solving linear programs with an additional reverse convex constraint
JO  - Kybernetika
PY  - 1985
SP  - 428
EP  - 435
VL  - 21
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a1/
LA  - en
ID  - KYB_1985_21_6_a1
ER  - 
%0 Journal Article
%A Muu, Lê Dung
%T A convergent algorithm for solving linear programs with an additional reverse convex constraint
%J Kybernetika
%D 1985
%P 428-435
%V 21
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a1/
%G en
%F KYB_1985_21_6_a1
Muu, Lê Dung. A convergent algorithm for solving linear programs with an additional reverse convex constraint. Kybernetika, Tome 21 (1985) no. 6, pp. 428-435. http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a1/

[1] M. Avriel, A. C. Williams: Complementary geometric programming. SIAM J. Appl. Math. /P (1970), 125-141. | MR | Zbl

[2] M. Avriel, A. C. Williams: An extension of geometric programming with applications in engineering optimization. J. Engng. Math. 5 (1971), 187-194.

[3] P. P. Bansal, S. E. Jacobsen: Characterization of local solution for a class of nonconvex programs. J. Optim. Theory Appl. 15 (1975), 127-131. | MR

[4] R. J. Hillestad: Optimization problems subject to a budged constraint with economies of scale. Oper. Res. 23 (1975), 1091-1098. | MR

[5] R. J. Hillestad, S. E. Jacobsen: Linear programs with an additional reverse convex constraint. Appl. Math. Optim. 6 (1980), 257-269. | MR | Zbl

[6] R. J. Hillestad, S. E. Jacobsen: Reverse convex programming. Appl. Math. Optim. 6 (1980) 63-78. | MR | Zbl

[7] R. Meyer: The validity of a family of optimization methods. SIAM J. Control 8 (1970), 41-54. | MR | Zbl

[8] J. B. Rosen: Iterative solution of nonlinear optimal control problems. SIAM J. Control 4 (1766), 223-244. | MR | Zbl

[9] N. V. Thoai, H. Tuy: Convergent algorithms for minimizing a concave function. Math. Oper. Res. 4 (1980), 556-565. | MR | Zbl

[10] H. Tuy: Concave programming under linear constraints. Dokl. Akad. Nauk SSSR 159 (1964), 32-35. | MR

[11] H. Tuy: Conical algorithm for solving a class of complementarity problems. Preprint series 18 (1981), Hanoi. | MR | Zbl

[12] U. Ueing: A combinatorical method to compute a global solution of certain nonconvex optimization problems. In: Numerical Methods for Non-Linear Optimization (F. A. Lootsma ed.), pp. 223-230, Academic Press, New York 1972. | MR