A compact variable metric algorithm for linearly constrained nonlinear minimax approximation
Kybernetika, Tome 21 (1985) no. 6, pp. 405-427 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49M37, 65D15, 65K05, 90C30
@article{KYB_1985_21_6_a0,
     author = {Luk\v{s}an, Ladislav},
     title = {A compact variable metric algorithm for linearly constrained nonlinear minimax approximation},
     journal = {Kybernetika},
     pages = {405--427},
     year = {1985},
     volume = {21},
     number = {6},
     mrnumber = {831100},
     zbl = {0594.90078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a0/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
TI  - A compact variable metric algorithm for linearly constrained nonlinear minimax approximation
JO  - Kybernetika
PY  - 1985
SP  - 405
EP  - 427
VL  - 21
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a0/
LA  - en
ID  - KYB_1985_21_6_a0
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%T A compact variable metric algorithm for linearly constrained nonlinear minimax approximation
%J Kybernetika
%D 1985
%P 405-427
%V 21
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a0/
%G en
%F KYB_1985_21_6_a0
Lukšan, Ladislav. A compact variable metric algorithm for linearly constrained nonlinear minimax approximation. Kybernetika, Tome 21 (1985) no. 6, pp. 405-427. http://geodesic.mathdoc.fr/item/KYB_1985_21_6_a0/

[1] K. W. Brodlie A. R. Gourlay, and J. Greenstadt: Rank one and two corrections to positive definite matrices expressed in product form. J. Inst. Math. Appl. 11 (1973), 1, 73 - 82. | MR

[2] R. Fletcher: The calculation of feasible points for linearly constrained optimization problems. A.E.R.E. Harwell Rept. No. R-6354 (1970).

[3] P. E. Gill, W. Murray: A numerically stable form of the simplex algorithm. Linear Algebra Appl. 7 (1973), 2,99-138. | MR | Zbl

[4] P. E. Gill, W. Murray: Newton-type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 3, 311 - 350. | MR | Zbl

[5] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions. Math. Programming 20 (1981), 1, 1-13. | MR | Zbl

[6] L. Lukšan: Software package for optimization and nonlinear approximation. Proc. of the 2nd IFAC/IFIP Symposium on Software for Computer Control, Prague 1979.

[7] L. Lukšan: Quasi-Newton methods without projections for linearly constrained minimization. Kybernetika 18 (1982), 4, 307-319. | MR

[8] L. Lukšan: Variable metric methods for linearly constrained nonlinear minimax approximation. Computing 30 (1983), 3, 315-334. | MR

[9] L. Lukšan: Dual method for solving a special problem of quadratic programming as a sub-problem at linearly constrained nonlinear minimax approximation. Kybernetika 20 (1984), 6, 445-457. | MR

[10] L. Lukšan: A compact variable metric algorithm for nonlinear minimax approximation. Computing (to appear). | MR

[11] L. Lukšan: An implementation of recursive quadratic programming variable metric methods for linearly constrained nonlinear minimax approximation. Kybernetika 21 (1985), 1, 22-40. | MR

[12] K. Madsen, H. Schjaer-Jacobsen: Linearly constrained minimax optimization. Math. Programming 14 (1978), 2, 208-223. | MR | Zbl

[13] M. J. D. Powell: A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis, Dundee 1977 (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Springer-Verlag, Berlin 1978. | MR

[14] K. Ritter: A variable metric method for linearly constrained minimization problems. In: Nonlinear Programming 3 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1978. | MR | Zbl

[15] P. Wolfe: Finding the nearest point in a polytope. Math. Programming 11 (1976), 2, 128-149. | MR | Zbl