@article{KYB_1985_21_5_a4,
author = {Zlatu\v{s}ka, Ji\v{r}{\'\i}},
title = {Normal forms in the typed $\lambda$-calculus with tuple types},
journal = {Kybernetika},
pages = {366--381},
year = {1985},
volume = {21},
number = {5},
mrnumber = {818889},
zbl = {0594.03005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_5_a4/}
}
Zlatuška, Jiří. Normal forms in the typed $\lambda$-calculus with tuple types. Kybernetika, Tome 21 (1985) no. 5, pp. 366-381. http://geodesic.mathdoc.fr/item/KYB_1985_21_5_a4/
[1] H. P. Barendregt: The Lambda Calculus. Its syntax and semantics. (Studies in Logic and the Foundations of Mathematics 103.), North-Holland, Amsterdam 1981. | MR | Zbl
[2] A. Church: A formulation of the simple theory of types. J. Symb. Logic 5 (1948), 1, 56-68. | MR
[3] A. Church: The Calculi of $\lambda$-conversion. (Annals of Mathematics Studies No. 6.), Princeton University Press, Princeton 1941 (1951). | MR | Zbl
[4] R. O. Gandy: An early proof of normalization by A. M. Turing. In: To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism (J. R. Hindley, J. P. Seldin, eds.), Academic Press, London 1980, pp. 453 - 456. | MR
[5] R. O. Gandy: Proofs of strong normalization. In: [4], pp. 457-477. | MR
[6] M. H. A. Newman: On theories with a combinatorial definition of "equivalence". Ann. of Math. (2), 43 (1942), 223-243. | MR | Zbl
[7] D. S. Scott: Lectures on a Mathematical Theory of Computation. Oxford University Computing Laboratory, Technical Monograph PRG-19, 1981. | MR
[8] D. S. Scott: Relating theories of the $\lambda$-calculus. In: [4], pp. 403 - 450. | MR
[9] A. S. Troelstra (ed.): Metamathematical Investigations of Intuitionistic Arithmetic and Analysis. (Lecture Notes in Mathematics 344). Springer-Verlag, Berlin 1973. | MR
[10] J. Zlatuška: HIT data model. Data bases from the functional point of view. In: Proc. 11th VLDB (A. Pirotte, Y. Vassiliou, eds.), Stockholm 1985, pp. 470-477.