Logarithmic information of degree $q$ linked with an extension of Fisher's information
Kybernetika, Tome 21 (1985) no. 5, pp. 346-359 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62B10, 62F10, 94A15
@article{KYB_1985_21_5_a2,
     author = {Bouchon, Bernadette and Pessoa, Franquiberto},
     title = {Logarithmic information of degree $q$ linked with an extension of {Fisher's} information},
     journal = {Kybernetika},
     pages = {346--359},
     year = {1985},
     volume = {21},
     number = {5},
     mrnumber = {818887},
     zbl = {0595.62001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_5_a2/}
}
TY  - JOUR
AU  - Bouchon, Bernadette
AU  - Pessoa, Franquiberto
TI  - Logarithmic information of degree $q$ linked with an extension of Fisher's information
JO  - Kybernetika
PY  - 1985
SP  - 346
EP  - 359
VL  - 21
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_5_a2/
LA  - en
ID  - KYB_1985_21_5_a2
ER  - 
%0 Journal Article
%A Bouchon, Bernadette
%A Pessoa, Franquiberto
%T Logarithmic information of degree $q$ linked with an extension of Fisher's information
%J Kybernetika
%D 1985
%P 346-359
%V 21
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_5_a2/
%G en
%F KYB_1985_21_5_a2
Bouchon, Bernadette; Pessoa, Franquiberto. Logarithmic information of degree $q$ linked with an extension of Fisher's information. Kybernetika, Tome 21 (1985) no. 5, pp. 346-359. http://geodesic.mathdoc.fr/item/KYB_1985_21_5_a2/

[1] N. L. Aggarwal: Measures d'information et questionnaires arborescents. Thése, Besancon 1974.

[2] D. E. Boekee: Generalized Fisher information with application to estimation problems. In: Information and Systems (Proc. IFAC Workshop, Compiegne, 1977), pp. 75-82. Pergamon Press, Oxford 1978. | MR

[3] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. (1967), 2, 299-316. | MR

[4] P. E. Ferreira: Miscellanea, extending Fisher's measure of information. Biometrika 68 (1981), 3, 695-698. | MR

[5] J. J. Gart: An extension of the Cramer-Rao inequality. Ann. Math. Statist. 30 (1959), 367- 379. | MR | Zbl

[6] G. G. Roussas: A First Course in Mathematical Statistics. Addision-Wesley, 1973. | Zbl

[7] I. Vajda: $\chi^\alpha$-divergence and generalized Fisher's information. In: Trans. 6th Prague Conf. on Inform. Theory, Statist. Dec. Functions and Random Processes, pp. 873 - 886. Academia, Prague 1973. | MR

[8] I. Vincze: On the Cramer-Fréchet-Rao inequality in the non regular case. In: Contributions to Statistics (J. Hajek Memorial Volume), pp. 253 - 262. Academia, Prague 1979. | MR | Zbl