Representable P. Martin-Löf tests
Kybernetika, Tome 21 (1985) no. 3, pp. 235-243 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03D80, 68Q99
@article{KYB_1985_21_3_a5,
     author = {Staiger, Ludwig},
     title = {Representable {P.} {Martin-L\"of} tests},
     journal = {Kybernetika},
     pages = {235--243},
     year = {1985},
     volume = {21},
     number = {3},
     mrnumber = {806728},
     zbl = {0576.03033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a5/}
}
TY  - JOUR
AU  - Staiger, Ludwig
TI  - Representable P. Martin-Löf tests
JO  - Kybernetika
PY  - 1985
SP  - 235
EP  - 243
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a5/
LA  - en
ID  - KYB_1985_21_3_a5
ER  - 
%0 Journal Article
%A Staiger, Ludwig
%T Representable P. Martin-Löf tests
%J Kybernetika
%D 1985
%P 235-243
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a5/
%G en
%F KYB_1985_21_3_a5
Staiger, Ludwig. Representable P. Martin-Löf tests. Kybernetika, Tome 21 (1985) no. 3, pp. 235-243. http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a5/

[ 1 ] C. Calude, I. Chiţescu: Random strings according to A. N. Kolmogorov and P. Martin-Löf - Classical approach. Found. Control Engrg. 7 (1982), 73-85. | MR

[2] C. Calude, I. Chiţescu: On the representability of P. Martin-Löf tests. Kybernetika 19 (1983), 42-47. | MR

[3] C. Calude, I. Chiţescu: Representability of recursive P. Martin-Löf tests. Kybernetika 19 (1983), 526-536. | MR

[4] A. N. Kolmogorov: Three approaches to the quantitative definition of information. Problems of Inform. Transmission 1 (1965), 1 - 7. | MR

[5] P. Martin-Löf : The definition of random sequences. Inform. and Control 19 (1966), 602-619. | MR

[6] H. Rogers, Jr.: The Theory of Recursive Functions and Effective Computability. McGraw-Hill New York 1967. | MR

[7] C. P. Schnorr: Zufälligkeit und Wahrscheinlichkeit. (Lecture Notes in Mathematics 218.) Springer-Verlag, Berlin 1971. | MR | Zbl

[8] A. K. Zvonkin, L. A. Levin: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Soviet Math. Survs. 25 (1970), 83-124. | MR | Zbl