Further remarks on the complexity of regulated rewriting
Kybernetika, Tome 21 (1985) no. 3, pp. 213-227 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 68Q45, 68Q50
@article{KYB_1985_21_3_a3,
     author = {Dassow, J\"urgen and P\u{a}un, Gheorghe},
     title = {Further remarks on the complexity of regulated rewriting},
     journal = {Kybernetika},
     pages = {213--227},
     year = {1985},
     volume = {21},
     number = {3},
     mrnumber = {806726},
     zbl = {0603.68076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a3/}
}
TY  - JOUR
AU  - Dassow, Jürgen
AU  - Păun, Gheorghe
TI  - Further remarks on the complexity of regulated rewriting
JO  - Kybernetika
PY  - 1985
SP  - 213
EP  - 227
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a3/
LA  - en
ID  - KYB_1985_21_3_a3
ER  - 
%0 Journal Article
%A Dassow, Jürgen
%A Păun, Gheorghe
%T Further remarks on the complexity of regulated rewriting
%J Kybernetika
%D 1985
%P 213-227
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a3/
%G en
%F KYB_1985_21_3_a3
Dassow, Jürgen; Păun, Gheorghe. Further remarks on the complexity of regulated rewriting. Kybernetika, Tome 21 (1985) no. 3, pp. 213-227. http://geodesic.mathdoc.fr/item/KYB_1985_21_3_a3/

[1] J. Dassow: Remarks on the complexity of regulated rewriting. Fund. Inform. 7(1984), 83-103. | MR | Zbl

[2] S. Ginsburg: The Mathematical Theory of Context-free Languages. McGraw Hill, New York 1966. | MR | Zbl

[3] J. Gruska: On a classification of context-free languages. Kybernetika 3 (1967), 22-29. | MR | Zbl

[4] J. Gruska: Descriptional complexity of context-free languages. In: Proc. Symp. Math. Foundations of Computer Science '73, 71 - 83. | MR

[5] O. Ibarra: Simple matrix languages. Inform. and Control 17 (1970), 359-394. | MR | Zbl

[6] O. Mayer: Some restrictive devices for context-free grammars. Inform. and Control 20 (1972), 69-92. | MR | Zbl

[7] Gh. Păun: Matrix Grammars. (in Romanian). The Scientific and Encyclopaedic Publ. House, Bucharest 1981.

[8] Gh. Păun: Six nonterminals are enough for generating a recursively enumerable language by a matrix grammar. Internat. J. Comput. Math. 75 (1984). | MR

[9] A. Pirická-Kelemenová: Doctoral dissertation, Bratislava 1980.

[10] A. Salomaa: Formal Languages. Academic Press, New York 1973. | MR | Zbl

[11] A. P. J. van der Walt: Random context languages. Information Processing 1971, North-Holland, Amsterdam 1972, 66-68. | MR