An algorithm for calculating the channel capacity of degree $\beta$
Kybernetika, Tome 21 (1985) no. 2, pp. 123-133 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 94A17
@article{KYB_1985_21_2_a4,
     author = {Taneja, Inder Jeet and Guerra, Fernando},
     title = {An algorithm for calculating the channel capacity of degree $\beta$},
     journal = {Kybernetika},
     pages = {123--133},
     year = {1985},
     volume = {21},
     number = {2},
     mrnumber = {797326},
     zbl = {0586.94008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a4/}
}
TY  - JOUR
AU  - Taneja, Inder Jeet
AU  - Guerra, Fernando
TI  - An algorithm for calculating the channel capacity of degree $\beta$
JO  - Kybernetika
PY  - 1985
SP  - 123
EP  - 133
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a4/
LA  - en
ID  - KYB_1985_21_2_a4
ER  - 
%0 Journal Article
%A Taneja, Inder Jeet
%A Guerra, Fernando
%T An algorithm for calculating the channel capacity of degree $\beta$
%J Kybernetika
%D 1985
%P 123-133
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a4/
%G en
%F KYB_1985_21_2_a4
Taneja, Inder Jeet; Guerra, Fernando. An algorithm for calculating the channel capacity of degree $\beta$. Kybernetika, Tome 21 (1985) no. 2, pp. 123-133. http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a4/

[1] S. Arimoto: Information-theoretical considerations on estimation problems. Inform. and Control 19 (1971), 3, 181-194. | MR | Zbl

[2] S. Arimoto: An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans. Inform. Theory IT-14 (1972), 14-20. | MR | Zbl

[3] S. Arimoto: Information measures and capacity of order a. for discrete memoryless channels. In: Proc. Colloq. on Inform. Theory, Keszthely (Hungary), 1975, 41-52. | MR

[4] S. Arimoto: Computation of random coding exponent functions. IEEE Trans. Inform. Theory IT-22 (1976), 666-671. | MR | Zbl

[5] R. E. Blahut: Computation of channel capacity and rate distortion functions. IEEE Trans. Inform. Theory IT-18 (1972), 460-473. | MR | Zbl

[6] M. C. Cheng: On the computation of capacity of a discrete memoryless channel. Inform. and Control 24 (1974), 292-298. | MR

[7] Z. Daróczy: Generalized information functions. Inform. and Control 16 (1970), 46-51. | MR

[8] R. G. Gallager: Information Theory and Reliable Communications. J. Wiley and Sons, New York 1968.

[9] J. Havrda, F. Charvát: Qualification method of classification processes: concept of structural a-entropy. Kybernetika 3 (1967), 1, 30-35. | MR

[10] B. Meister, W. Oettli: On the capacity of a discrete, constant channel. Inform. and Control 11 (1967), 341-351. | Zbl

[11] S. Muroga: On the capacity of a discrete channel, I. J. Phys. Soc. Japan 8 (1953), 484 - 494. | MR

[12] A. Rényi: On measures of entropy and information. In: Proc. 4th Berkley Svmp. Math. Statist. Prob., Univ. of Calif. Press, Berkeley, Calif., vol. I (1951), 547-561. | MR

[13] B. D. Sharma, D. P. Mittal: New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 10 (1975), 28-40. | MR

[14] S. Takano: On a method of calculating the capacity of a discrete memoryless channel. Inform. and Control 29 (1975), 327-336. | MR | Zbl

[15] I. J. Taneja, D. M. Flemming: An iterative method for calculating the weighted capacity of a discrete constant channel. 13° Colloq. Brasileira de Met., 20-24 July 1982, Pocos de Caldas, MG.

[16] I. J. Taneja, M. J. Wanderlinde: An algorithm for computing the generalized $\gamma$-capacity of a discrete memoryless channel. J. Inform, and Optim. Sci. 4 (1983), 3, 269 - 282. | MR