Variable metric methods for a class of extended conic functions
Kybernetika, Tome 21 (1985) no. 2, pp. 96-107 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49M37, 65K05, 90C30
@article{KYB_1985_21_2_a1,
     author = {Luk\v{s}an, Ladislav},
     title = {Variable metric methods for a class of extended conic functions},
     journal = {Kybernetika},
     pages = {96--107},
     year = {1985},
     volume = {21},
     number = {2},
     mrnumber = {797323},
     zbl = {0548.90062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a1/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
TI  - Variable metric methods for a class of extended conic functions
JO  - Kybernetika
PY  - 1985
SP  - 96
EP  - 107
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a1/
LA  - en
ID  - KYB_1985_21_2_a1
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%T Variable metric methods for a class of extended conic functions
%J Kybernetika
%D 1985
%P 96-107
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a1/
%G en
%F KYB_1985_21_2_a1
Lukšan, Ladislav. Variable metric methods for a class of extended conic functions. Kybernetika, Tome 21 (1985) no. 2, pp. 96-107. http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a1/

[1] P. Bjørstad, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing 22 (1979), 2, 93-100. | MR

[2] C. G. Broyden: Quasi-Newton methods and their application to function minimization. Math. Comp. 21 (1967), 99, 368-381. | MR

[3] W. C. Davidon: Conic approximations and collinear scalings for optimizers. SIAM J. Numer. Anal. 77 (1980), 2, 268-281. | MR | Zbl

[4] L. Lukšan: Quasi-Newton methods without projections for unconstrained minimization. Kybernetika 18 (1982), 4, 290-306. | MR

[5] L. Lukšan: Conjugate gradient algorithms for conic functions. Computing (submitted for publication).

[6] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM J. Numer. Anal. 77 (1980), I, 84-114. | MR | Zbl