@article{KYB_1985_21_2_a1,
author = {Luk\v{s}an, Ladislav},
title = {Variable metric methods for a class of extended conic functions},
journal = {Kybernetika},
pages = {96--107},
year = {1985},
volume = {21},
number = {2},
mrnumber = {797323},
zbl = {0548.90062},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a1/}
}
Lukšan, Ladislav. Variable metric methods for a class of extended conic functions. Kybernetika, Tome 21 (1985) no. 2, pp. 96-107. http://geodesic.mathdoc.fr/item/KYB_1985_21_2_a1/
[1] P. Bjørstad, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing 22 (1979), 2, 93-100. | MR
[2] C. G. Broyden: Quasi-Newton methods and their application to function minimization. Math. Comp. 21 (1967), 99, 368-381. | MR
[3] W. C. Davidon: Conic approximations and collinear scalings for optimizers. SIAM J. Numer. Anal. 77 (1980), 2, 268-281. | MR | Zbl
[4] L. Lukšan: Quasi-Newton methods without projections for unconstrained minimization. Kybernetika 18 (1982), 4, 290-306. | MR
[5] L. Lukšan: Conjugate gradient algorithms for conic functions. Computing (submitted for publication).
[6] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization. SIAM J. Numer. Anal. 77 (1980), I, 84-114. | MR | Zbl