On the equivalence conditions of two-stage and direct identification methods
Kybernetika, Tome 21 (1985) no. 1, pp. 41-60 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B30, 93B40, 93C05, 93C35
@article{KYB_1985_21_1_a4,
     author = {Stankiewicz, Anna},
     title = {On the equivalence conditions of two-stage and direct identification methods},
     journal = {Kybernetika},
     pages = {41--60},
     year = {1985},
     volume = {21},
     number = {1},
     mrnumber = {788668},
     zbl = {0557.93015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1985_21_1_a4/}
}
TY  - JOUR
AU  - Stankiewicz, Anna
TI  - On the equivalence conditions of two-stage and direct identification methods
JO  - Kybernetika
PY  - 1985
SP  - 41
EP  - 60
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1985_21_1_a4/
LA  - en
ID  - KYB_1985_21_1_a4
ER  - 
%0 Journal Article
%A Stankiewicz, Anna
%T On the equivalence conditions of two-stage and direct identification methods
%J Kybernetika
%D 1985
%P 41-60
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1985_21_1_a4/
%G en
%F KYB_1985_21_1_a4
Stankiewicz, Anna. On the equivalence conditions of two-stage and direct identification methods. Kybernetika, Tome 21 (1985) no. 1, pp. 41-60. http://geodesic.mathdoc.fr/item/KYB_1985_21_1_a4/

[1] A. P. Sage, N. J. Guinzy: Identification and modelling of large-scale systems using sensitivity analysis. Internat. J. Control 17 (1973), 5, 1073-1087. | Zbl

[2] E. J. Davison: A method for simplifying linear dynamic systems. IEEE Trans. Automat. Control AC-11 (1966), 1, 93-101.

[3] H. Heffes, P. E. Sarachnik: Uniform approximation of linear systems. Bell System Tech. J. 48 (1969), 209-231. | MR

[4] N. K. Sinha, G. T. Bereznai: Optimum approximation on high-order systems by low-order models. Internat. J. Control 14 (1971), 5, 951-959.

[5] M. Milanese, A. Negro: Uniform approximation of systems: a Banach space approach. J. Optim. Theory Appl. 12 (1973), 2, 203-217. | MR | Zbl

[6] J. D. Aplevich: Approximation of discrete linear systems. Internat. J. Control 17 (1973), 3, 565-575. | Zbl

[7] J. B. Riggs, T. E. Edgar: Least-squares reduction of linear systems using impulse response. Internat. J. Control 20 (1974), 2, 213-223. | Zbl

[8] R. Genesio, R. Rome: Identification of reduced models from noisy data. Internat. J. Control 21 (1975), 2, 203-211. | MR

[9] S. A. Arafeh, A. P. Sage: Multilevel discrete time system identification in large scale systems. Internat. J. Systems Sci. 15 (1974), 8, 753-791. | MR | Zbl

[10] M. G. Singh: Multi-level state estimation. Internat. J. Systems Sci. 6 (1975), 6, 535-555. | MR | Zbl

[11] Z. Bubnicki, L. Koszałka: Introductory Concept of Experiment Control. Technical Report No. 68, Institute of Eng. Cybernet., Technical University of Wroclaw, Wroclaw 1974.

[12] Z. Bubnicki: On the multistage identification. Systems Sci. 3 (1977), 2, 207-210. | MR | Zbl

[13] J. Swiątek: On two-stage parameter estimation in static systems. IEEE Trans. Systems Man Cybernet. 13 (1983), 1, 77-81.

[14] R. N. Pandya, B. Pagurek: Two stage least-squares estimators and their recursive approximations. In: Proc. 3rd IFAC Symp. Identification and System Parameter Estimation (1973), 701-710. | Zbl

[15] R. N. Pandya: A class of bootstrap estimators and their relationship to the generalized two stage least-squares estimators. IEEE Trans. Automat. Control -AC-19 (1974), 6, 831-835. | Zbl

[16] R. M. Prasad A. K. Sinha, A. K. Mahalanabis: Two-stage identification on closed-loop systems. IEEE Trans. Automat. Control AC-22 (1977), 6, 987-988.

[17] S. Y. Fakhouri: Identification of a class of non-linear systems from short input/output records. Internat. J. Systems Sci. 11 (1980), 11, 1327-1334. | MR | Zbl

[18] E. Rafajłowicz: Decomposition of the least-squares identification algorithm on the basis of a two-stage experiment. Systems Sci. 7 (1981), 1, 105-109.

[19] T. C. Hsia: A two-stage least-squares procedure for system identification. IEEE Trans. Automat. Control AC-26 (1981), 3, 742-745. | MR | Zbl

[20] J. M. Mendel: Multistage least-squares parameter estimation: an approach to modelling large scale systems. Presented at the 5th Symp. Nonlinear Estimation and its Applications, San Diego 1974.

[21] J. M. Mendel: Computation requirements for multistage least-squares estimators. Presented at the 6th Symp. Nonlinear Estimation and its Applications, San Diego 1975.

[22] J. M. Mendel: Multistage least-squares parameter estimators. IEEE Trans. Automat. Control AC-20 (1975), 6, 775-782. | MR | Zbl

[23] K. Yosida: Functional Analysis. Springer-Verlag, Berlin 1980. | MR | Zbl

[24] K. Maurin: Methods of Hilbert Spaces. Polish Scientific Publishers, Warsaw 1972. | MR