Regression quantiles and trimmed least squares estimator under a general design
Kybernetika, Tome 20 (1984) no. 5, pp. 345-357 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62E20, 62F12, 62F35, 62J05
@article{KYB_1984_20_5_a0,
     author = {Jure\v{c}kov\'a, Jana},
     title = {Regression quantiles and trimmed least squares estimator under a general design},
     journal = {Kybernetika},
     pages = {345--357},
     year = {1984},
     volume = {20},
     number = {5},
     mrnumber = {776325},
     zbl = {0561.62027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1984_20_5_a0/}
}
TY  - JOUR
AU  - Jurečková, Jana
TI  - Regression quantiles and trimmed least squares estimator under a general design
JO  - Kybernetika
PY  - 1984
SP  - 345
EP  - 357
VL  - 20
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1984_20_5_a0/
LA  - en
ID  - KYB_1984_20_5_a0
ER  - 
%0 Journal Article
%A Jurečková, Jana
%T Regression quantiles and trimmed least squares estimator under a general design
%J Kybernetika
%D 1984
%P 345-357
%V 20
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1984_20_5_a0/
%G en
%F KYB_1984_20_5_a0
Jurečková, Jana. Regression quantiles and trimmed least squares estimator under a general design. Kybernetika, Tome 20 (1984) no. 5, pp. 345-357. http://geodesic.mathdoc.fr/item/KYB_1984_20_5_a0/

[1] R. R. Bahadur: A note on quantiles in large samples. Ann. Math. Statist. 37 (1966), 577-580. | MR | Zbl

[2] G. Bassett, R. Koenker: An empirical quantile function for linear models with iid errors. J. Amer. Statist. Assoc. 77 (1982), 407-415. | MR | Zbl

[3] G. Bassett, R. Koenker: Convergence of an empirical distribution function for the linear model. Submitted (1983).

[4] P. J. Bickel: On some analogues to linear combinations of order statistics in the linear model. Ann. Statist. / (1973), 597-616. | MR | Zbl

[5] P. Billingsley: Convergence of Probability Measures. J. Wiley, New York, 1968. | MR | Zbl

[6] P. J. Huber: Robust Statistics. J. Wiley, New York 1981. | MR | Zbl

[7] L. A. Jaeckel: Estimating regression coefficients by minimizing the dispersion of the residuals. Ann. Math. Statist. 43 (1972), 1449-1458. | MR | Zbl

[8] J. Jurečková: Nonparametric estimate of regression coefficients. Ann. Math. Statist. 42 (1971), 1328-1338. | MR

[9] J. Jurečková: Asymptotic independence of rank test statistic for testing symmetry on regression. Sankhya A 33 (1971), 1-18. | MR

[10] J. Jurečková: Asymptotic relations of M-estimates and R-estimates in linear regression model. Ann. Statist. 5 (1977), 464-472. | MR

[11] J. Jurečková: Asymptotic representation of M-estimators of location. Math. Operations-forsch. Statist., Ser. Statistics 11 (1980), 61-73. | MR

[12] J. Jurečková: Robust estimators of location and regression parameters and their second order asymptotic relations. In: Trans. 9th Prague Conf. on Inform. Theory, Statist. Dec. Functions and Random Processes, pp. 19-32. Academia, Praha 1983. | MR

[13] J. Jurečková: Winsorized least-squares estimator and its M-estimator counterpart. Contributions to Statistics: Essays in Honour of Norman L. Johnson (ed. P. K. Sen), pp. 237- 245. North-Holland, Amsterdam 1983. | MR

[14] J. Jurečková, P. K. Sen: On adaptive scale-equivariant M-estimators in linear models. Statistics and Decisions 2, (1984), to appear. | MR

[15] R. Koenker: A note on L-estmates for linear models. Preprint. Bell Laboratories, Murray- Hill (1983). | MR

[16] R. Koenker, G. Bassett: Regression quantiles. Econometrica 46 (1978), 33 - 50. | MR | Zbl

[17] H. L. Koul: Asymptotic behavior of a class of confidence regions based on ranks in regression. Ann. Math. Statist. 42 (1971), 466-476. | MR | Zbl

[18] S. Portnoy: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. Submitted (1983). | MR

[19] D. Ruppert, R. J. Carroll: Trimmed least-squares estimation in the linear model. J. Amer. Statist. Assoc. 75 (1980), 828-838. | MR | Zbl