Motivation, existence and equivariance of $D$-estimators
Kybernetika, Tome 20 (1984) no. 3, pp. 189-208 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62B10, 62F10, 62F12
@article{KYB_1984_20_3_a1,
     author = {Vajda, Igor},
     title = {Motivation, existence and equivariance of $D$-estimators},
     journal = {Kybernetika},
     pages = {189--208},
     year = {1984},
     volume = {20},
     number = {3},
     mrnumber = {763646},
     zbl = {0558.62026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1984_20_3_a1/}
}
TY  - JOUR
AU  - Vajda, Igor
TI  - Motivation, existence and equivariance of $D$-estimators
JO  - Kybernetika
PY  - 1984
SP  - 189
EP  - 208
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1984_20_3_a1/
LA  - en
ID  - KYB_1984_20_3_a1
ER  - 
%0 Journal Article
%A Vajda, Igor
%T Motivation, existence and equivariance of $D$-estimators
%J Kybernetika
%D 1984
%P 189-208
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1984_20_3_a1/
%G en
%F KYB_1984_20_3_a1
Vajda, Igor. Motivation, existence and equivariance of $D$-estimators. Kybernetika, Tome 20 (1984) no. 3, pp. 189-208. http://geodesic.mathdoc.fr/item/KYB_1984_20_3_a1/

[1] J. Aczél: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966. | MR

[2] D. F. Andrews P. J. Bickel R. R. Hampel P. J. Huber W. H. Rogers, J. W. Tukey: Robust Estimates of Location. Princeton Univ. Press, Princeton, N. J. 1972.

[3] D. E. Boekee: The $D_f$-information of order s. In: Trans. 8th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1979, 55-68. | MR

[4] D. D. Boos: Minimum distance estimators for location and goodness of fit. J. Amer. Statist. Assoc. 76 (1981), 663-670. | MR | Zbl

[5] I. Csiszár: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. AS (1963), 85-108. | MR

[6] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, (1967) 209-318. | MR

[7] H. Cramér: Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, N. J. 1946. | MR

[8] P. I. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101. | MR | Zbl

[9] P. I. Huber: Robust statistics: a review. Ann. Math. Statist. 43 (1972), 1041-1067. | MR | Zbl

[10] S. Kullback, R. A. Leibler: On information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86. | MR | Zbl

[11] L. Le Cam: On the information contained in additional observations. Ann. Statist. 2 (1974), 630-649. | MR | Zbl

[12] R. Š. Lipcer, A. N. Širjaev: Statistics of Random Processes. (in Russian). Nauka, Moscow 1974. | MR

[13] P. W. Millar: Robust estimation via minimum distance methods. Z. Wahrsch. verw. Gebiete 55 (1981), 73-89. | MR | Zbl

[14] A. M. Mood F. A. Graybill, D. C. Boes: Introduction to the Theory of Statistics. McGraw-Hill, New York 1963.

[15] J. Neyman: Contributions to the theory of $\chi^2$-test. In: Proc. 1st Berkeley Symp. on Math. Statist., etc., Univ. of Calif. Press, Berkeley 1949, 239-273.

[16] W. C. Parr, W. R. Schucany: Minimum distance and robust estimation. J. Amer. Statist. Assoc. 75 (1980), 616-624. | MR | Zbl

[17] C. R. Rao: Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. on Math. Statist., etc., Vol. 1, Univ. of Calif. Press, Berkeley 1961, 531-546. | MR | Zbl

[18] C. R. Rao: Criteria of estimation in large samples. Sankhya 25 (1963), 189-206. | MR | Zbl

[19] P. V. Rao, al.: Estimation of shift and center of symmetry based on Kolmogorov-Smirnov statistic. Ann. Statist. 3 (1975), 862-873. | MR

[20] I. Vajda: Limit theorems for total variation of Cartesian product measures. Studia Sci. Math. Hungar. 6 (1971), 317-333. | MR

[21] I. Vajda: On the f-divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223-234. | MR | Zbl

[22] I. Vajda: $\chi^\alpha$-divergence and generalized Fisher information. In: Trans. 6th Prague Conf. on Inform. Theory, etc., Academia, Prague 1973, 873 - 886. | MR | Zbl

[23] I. Vajda: Theory of Information and Statistical Decision. (in Slovak), Alfa, Bratislava 1981.

[24] I. Vajda: A new general approach to minimum distance estimation. In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. | MR | Zbl

[25] I. Vajda: Minimum divergence principle in statistical estimation. Statistics and Decisions (submitted). | Zbl

[26] M. Vošvrda: On second order efficiency of minimum divergence estimators. In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. | MR

[27] J. Wolfowitz: The minimum distance method. Ann. Math. Statist. 28 (1957), 75-88. | MR | Zbl

[28] P. W. Zehna: Invariance of maximum likelihood estimation. Ann. Math. Statist. 37 (1966), 755. | MR