@article{KYB_1984_20_2_a1,
author = {Datta, K. B.},
title = {Hankel-matrix approach to invertibility of linear multivariable systems},
journal = {Kybernetika},
pages = {107--126},
year = {1984},
volume = {20},
number = {2},
mrnumber = {747063},
zbl = {0536.93016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1984_20_2_a1/}
}
Datta, K. B. Hankel-matrix approach to invertibility of linear multivariable systems. Kybernetika, Tome 20 (1984) no. 2, pp. 107-126. http://geodesic.mathdoc.fr/item/KYB_1984_20_2_a1/
[1] P. J. Antsaklis: Stable proper nth order inverses. IEEE Trans. Automat. Control AC-23 (1978), 1104-1106. | MR | Zbl
[2] V. T. Borukhov: Invertibility criteria for linear stationary multivariable systems. Avtomat. i Telemeh. (1978), 1, 5-11. | MR | Zbl
[3] R. W. Brockett: Poles, zeros and feedback: state-space interpretation. IEEE Trans. Automat. Control AC-10 (1965), 129-135.
[4] R. W. Brockett, M. D. Mesarović: The reproducibility of multivariable systems. J. Math. Anal. Appl. 11 (1965), 548-563. | MR
[5] K. B. Datta: Irreducible realization in canonical forms. J. Franklin Inst. 303 (1977), 5, 437-452. | Zbl
[6] K. B. Datta: Minimal realization in companion forms. J. Franklin Institute 309 (1980), 2, 103-123. | MR | Zbl
[7] P. Dorato: On the inverse of linear dynamical systems. IEEE Trans. Systems Man Cybernet. SSC-5 (1969), 1, 43-48. | Zbl
[8] T. Downs E. Emre, O. Huseyin: Comments on "On the inversion of rational matrices". IEEE Trans. Circuits and Systems CAS-22 (1975), 4, 375-376. | MR
[9] E. Emre, O. Huseyin: Invertibility criteria for linear multivariable systems. IEEE Trans. Automat. Control AC-19 (1974), 3, 609-610. | MR
[10] G. D. Forney: Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory IT-16 (1970), 6, 720-738. | MR | Zbl
[11] G. D. Forney: Minimal bases for rational vector spaces, with application to multivariable linear systems. SIAM J. Control 13 (1975), 3, 493-520. | MR
[12] M. L. J. Hautus: The formal Laplace transform for smooth linear systems. In: Mathematical Systems Theory - Proceedings of the International Symposium Udine, Italy, June 16 - 27, 1975 (G. Marcheseni, S. K. Mitter, eds.). (Lecture Notes in Economics and Mathematical Systems 131.) Springer-Verlag, Berlin-Heidelberg-New York 1976, pp. 29-47. | MR
[13] R. E. Kalman: On minimal partial realizations of a linear input/output map. In: Aspects of Network and System Theory, Holt, Rinehart and Winston 1971, pp. 385-407.
[14] V. Kučera: On the minimal order inverses for linear time-invariant discrete systems. Preprint, JACC, paper no. 5-C 2, (1971), 312-318.
[15] J. L. Massey, M. K. Sain: Inverses of linear sequential circuits. IEEE Trans. Comput. C-17 (1968), 330-337. | Zbl
[16] P. J. Moylan: Stable inversion of linear systems. IEEE Trans. Automat. Control AC-22 (1977), 1, 74-78. | MR | Zbl
[17] P. A. Orner: Construction of inverse systems. IEEE Trans. Automat. Control AC-17 (1972), 1, 151-153. | MR
[18] M. K. Sain, J. L. Massey: Invertibility of linear time-invariant dynamical systems. IEEE Trans. Automat. Control AC-14 (1969), 141-149. | MR
[19] L. M. Silverman: Inversion of multivariable linear systems. IEEE Trans. Automat. Control AC-14 (1969), 270-276. | MR
[20] L. M. Silverman, H. J. Payne: Input-output structure of linear systems with application to the decoupling problem. SIAM J. Control 9 (1971), 193-233. | MR | Zbl
[21] S. H. Wang, E. J. Davison: A minimization algorithm for the design of linear multi-variable systems. IEEE Trans. Automat. Control AC-18 (1973), 3, 220-225. | MR
[22] S. H. Wang, E. J. Davison: A new invertibility criteria for linear multivariable systems. IEEE Trans. Automat. Control AC-18 (1973), 538-539. | MR
[23] A. S. Willsky: On the invertibility of linear systems. IEEE Trans. Automat. Control AC-19 (1974), 3,272-274. | MR | Zbl
[24] B. F. Wyman, M. K. Sain: The zero module and essential inverse systems. IEEE Trans. Circuits and Systems CAS-28 (1981), 2, 112-126. | MR | Zbl
[25] Fu-Min Yuan: Minimal dimension inverses of linear sequential circuits. IEEE Trans. Automat. Control AC-20 (1975), 1, 42-52. | MR