@article{KYB_1984_20_2_a0,
author = {And\v{e}l, Ji\v{r}{\'\i} and Netuka, Ivan and Zv\'ara, Karel},
title = {On threshold autoregressive processes},
journal = {Kybernetika},
pages = {89--106},
year = {1984},
volume = {20},
number = {2},
mrnumber = {747062},
zbl = {0547.62058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1984_20_2_a0/}
}
Anděl, Jiří; Netuka, Ivan; Zvára, Karel. On threshold autoregressive processes. Kybernetika, Tome 20 (1984) no. 2, pp. 89-106. http://geodesic.mathdoc.fr/item/KYB_1984_20_2_a0/
[1] H. Akaike: A new look at the statistical model identfication. IEEE Trans. Automat. Control AC-19 (1974), 716-723. | MR
[2] J. Anděl: Fitting models in time series analysis. Math. Operationsforsch. Statist., Ser. Statistics 13 (1982), 121-143. | MR
[3] J. Anděl: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conf. Inform. Theory etc., Vol. A, Academia, Prague 1983, pp. 127- 135. | MR
[4] J. Anděl: Dependent random variables with a given marginal distribution. Acta Univ. Carolinae. Math.-and Phys. 24 (1983), 3-12. | MR
[5] J. Anděl, T. Cipra: Prahové modely. (výzkumná zpráva) [Threshold Models (Technical Report)]. Institut hygieny a epidemiologie, Praha 1982.
[6] C. W. J. Granger, A. P. Anderson: An Introduction to Bilinear Time Series Models. Vandenhoeck and Ruprecht, Gottingen 1978. | MR
[7] D. L. Doob: Stochastic Processes. Wiley, New York 1953. | MR | Zbl
[8] V. Haggan, T. Ozaki: Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model. Biometrika 68 (1981), 189-196. | MR | Zbl
[9] D. A. Jones: Non-linear Autoregressive Processes. Unpublished Ph. D. Thesis, Univ. of London 1976.
[10] D. A. Jones: Stationarity of Non-linear Autoregressive Processes. Technical Report, Institute of Hydrology, Wallingford, Oxon, U.K. 1977.
[11] D. A. Jones: The Statistical Treatment of Non-linear Autoregressive Processes. Technical Report, Institute of Hydrology, Wallingford, Oxon, U. K. 1977.
[12] D. A. Jones: Nonlinear autoregressive processes. Proc. Roy. Soc. London Ser. A 360 (1978), 71-95. | MR | Zbl
[13] T. Ozaki: Non-linear threshold autoregressive models for non-linear random vibrations. J. Appl. Prob. 18 (1981), 443-451. | Zbl
[14] T. Ozaki, H. Oda: Non-linear time series model identification by Akaike's information criterion. In: Information and Systems (B. Dubuisson, ed.), Pergamon Press, Oxford 1978.
[15] J. Pemberton, H. Tong: A Note on the Distributions of Non-linear Autoregressive Stochastic Processes. Technical Report 132, Dept. of Statist., Univ. of Manchester 1980.
[16] J. Pemberton, H. Tong: Frequency-domain Analysis of Non-linear Systems Through Threshold Autoregression. Technical Report 140, Dept. of Statist., Univ. of Manchester 1981.
[17] H. Tong: On a threshold model. In: Pattern Recognition and Signal Processing (C. H. Chen, ed.), Sijthoffand Noordhoff, Amsterdam 1978, pp. 575-586.
[18] H. Tong: A view on non-linear time series model building. In: Time Series (Proc. Int. Conf. Nottingham Univ. 1979,0. D. Anderson, ed.), North Holland, Amsterdam 1980, pp. 41- 56. | MR
[19] H. Tong: On the Structure of Threshold Time Series Models. Technical Report 134, Dept. of Statist., Univ. of Manchester 1980.