Representability of recursive P. Martin-Löf tests
Kybernetika, Tome 19 (1983) no. 6, pp. 526-536 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03D15, 03D25, 03D45
@article{KYB_1983_19_6_a8,
     author = {Calude, Cristian and Chi\c{t}escu, Ion},
     title = {Representability of recursive {P.} {Martin-L\"of} tests},
     journal = {Kybernetika},
     pages = {526--536},
     year = {1983},
     volume = {19},
     number = {6},
     mrnumber = {734837},
     zbl = {0529.03021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a8/}
}
TY  - JOUR
AU  - Calude, Cristian
AU  - Chiţescu, Ion
TI  - Representability of recursive P. Martin-Löf tests
JO  - Kybernetika
PY  - 1983
SP  - 526
EP  - 536
VL  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a8/
LA  - en
ID  - KYB_1983_19_6_a8
ER  - 
%0 Journal Article
%A Calude, Cristian
%A Chiţescu, Ion
%T Representability of recursive P. Martin-Löf tests
%J Kybernetika
%D 1983
%P 526-536
%V 19
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a8/
%G en
%F KYB_1983_19_6_a8
Calude, Cristian; Chiţescu, Ion. Representability of recursive P. Martin-Löf tests. Kybernetika, Tome 19 (1983) no. 6, pp. 526-536. http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a8/

[1] C. Calude, I. Chijescu: Random strings according to A. N. Kolmogorov and P. Martin-Löf. Classical approach. Found. Control Engrg. 3 (1982), 73 - 85. | MR

[2] C. Calude, I. Chitescu: On representability of P. Martin-Löf tests. Kybernetika 19 (1983), 42-47. | MR | Zbl

[3] A. N. Kolmogorov: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1 (1965), 1 - 7. | MR

[4] M. Machtey, P. Young: An Introduction to the General Theory of Algorithms. North-Holland, Amsterdam 1978. | MR | Zbl

[5] P. Martin-Löf: The definition of random sequences. Inform. and Control 19 (1966), 602-619. | MR

[6] H. Rogers, Jr.: The Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York 1967. | MR

[7] V. A. Uspensky, A. L. Semenov: What are the gains of the theory of algorithms. In: Algorithms in Modern Mathematics and Computer Science (A. P. Ersov, D. E. Knuth, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1981, 100-234. | MR